Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 5(6): e01721, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25370488

RESUMO

UNLABELLED: For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. IMPORTANCE: In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Epidemias , Genoma Bacteriano , Tipagem Molecular , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética , Cólera/transmissão , Genótipo , Haiti/epidemiologia , Epidemiologia Molecular , Nepal , Filogeografia , Análise de Sequência de DNA , Vibrio cholerae O1/isolamento & purificação
2.
Emerg Infect Dis ; 20(3): 364-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24565502

RESUMO

Three recently sequenced strains isolated from patients during an outbreak of Mycobacterium abscessus subsp. massiliense infections at a cystic fibrosis center in the United States were compared with 6 strains from an outbreak at a cystic fibrosis center in the United Kingdom and worldwide strains. Strains from the 2 cystic fibrosis outbreaks showed high-level relatedness with each other and major-level relatedness with strains that caused soft tissue infections during an epidemic in Brazil. We identified unique single-nucleotide polymorphisms in cystic fibrosis and soft tissue outbreak strains, separate single-nucleotide polymorphisms only in cystic fibrosis outbreak strains, and unique genomic traits for each subset of isolates. Our findings highlight the necessity of identifying M. abscessus to the subspecies level and screening all cystic fibrosis isolates for relatedness to these outbreak strains. We propose 2 diagnostic strategies that use partial sequencing of rpoB and secA1 genes and a multilocus sequence typing protocol.


Assuntos
Surtos de Doenças , Infecções por Mycobacterium/epidemiologia , Mycobacterium/isolamento & purificação , Brasil , Fibrose Cística/complicações , Genoma Bacteriano , Humanos , Tipagem de Sequências Multilocus , Mycobacterium/classificação , Mycobacterium/genética , Infecções por Mycobacterium/complicações , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/microbiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA