Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomedicines ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37893029

RESUMO

Cervical cancer (CC) is a serious global health issue, and it is well-known that HPV infection is the main etiological factor that triggers carcinogenesis. In cancer, chemokine ligands and receptors are involved in tumor cell growth, metastasis, leukocyte infiltration, and angiogenesis; however, information on the role played by E6/E7 of HPV16/18 in the modulation of chemokines is very limited. Therefore, this study aimed to determine whether chemokines are differentially expressed in CC-derived cell lines; if E6/E7 oncoproteins from HPV16 and 18 are capable of mediating chemokine expression, what is the expression profile of chemokines in tissues derived from CC and what is their impact on the overall survival of patients with this pathology? For this purpose, RNA sequencing and real-time PCR were performed on SiHa, HeLa, and C33A tumorigenic cell lines, on the non-tumorigenic HaCaT cells, and the E6/E7 HPV-transduced HaCaT cell models. Furthermore, chemokine expression and survival analysis were executed on 304 CC and 22 normal tissue samples from The Cancer Genome Atlas (TCGA) repository. The results demonstrate that CXCL1, CXCL2, CXCL3, and CXCL8 are regulated by E6/E7 of HPV16 and 18, are overexpressed in CC biopsies, and that their higher expression is related to a worse prognostic survival.

2.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445768

RESUMO

Cervical cancer (CC) is one of the most common and deadly types of female cancer worldwide. Late diagnosis in CC increases the risk of tumor cells spreading to distant organs (metastasis). The epithelial-mesenchymal transition (EMT) is a fundamental process of cancer metastasis. Inflammation can lead to tumor progression, EMT induction, and metastasis. The inflammatory microenvironment is a potent inducer of EMT; inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-α) and Transforming growth factor-beta (TGF-ß1) activate transcriptional factors such as STAT3, Snail, Smad, and the Nuclear Factor kappa light-chain-enhancer of activated beta cells (NF-κΒ), which drive EMT. Anti-inflammatory compounds may be an option in the disruption of EMT. PenToXifylline (PTX) possesses potent anti-inflammatory effects by inhibiting NF-κB activity. In addition, PTX exerts an anti-fibrotic effect by decreasing Smad2/3/4. We hypothesize that PTX could exert anti-EMT effects. CaSki human cervical tumor cells were exposed to TNF-α 10 ng/mL and TGF-ß1 alone or in combination for 5 days. Our results revealed that TNF-α and TGF-ß1 induced N-cadherin and Vimentin, confirming the induction of EMT. Furthermore, the combination of cytokines synergized the expression of mesenchymal proteins, enhanced IκBα and p65 phosphorylation, and upregulated Serpin family E member 1 (SERPINE1) mRNA. PTX pretreatment prior to the addition of TNF-α and TGF-ß1 significantly reduced N-cadherin and Vimentin levels. To our knowledge, this is the first time that this effect of PTX has been reported. Additionally, PTX reduced the phosphorylation of IκB-α and p65 and significantly decreased SERPINE1 expression, cell proliferation, migration, and invasion. In conclusion, PTX may counteract EMT in cervical cancer cells by decreasing the NF-κB and SERPINE1.


Assuntos
Pentoxifilina , Neoplasias do Colo do Útero , Feminino , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal , Vimentina/metabolismo , Pentoxifilina/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Caderinas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Inibidor 1 de Ativador de Plasminogênio/genética
3.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176052

RESUMO

Infection of epithelial cells with high-risk HPV (HR-HPV) types, followed by expression of virus oncogenic proteins (E5, E6, and E7), leads to genomic imbalance, suppression of tumor inhibitors, and induction of oncogenes. Low-risk HPV (LR-HPV) may slow the rate at which cervical cancer spreads to an invasive stage since co-infection with LR-HPV is linked to a decreased risk of future invasive cancer than infection with HR-HPV alone. We then propose that cancer-progressing changes may be distinguished through identifying the functional differences between LR-HPV and HR-HPV. Lentiviral strategies were followed to establish HaCaT cells with constitutive expression of HPV oncogenes. RNAseq experiments were designed to analyze the transcriptome modulations caused by each of the E5, E6, and E7 oncogenes of HPV-16 and HPV-84 in HaCaT cells. We identified enhanced RNA degradation, spliceosome, and RNA polymerase pathways related to mRNA processing. ATTS (alternative transcription termination site) was discovered to be more prevalent in cells with HPV-16E5 than HPV-84E5. In HPV-16E6-infected cells, ATTS gain was significantly higher than ATTS loss. Cells with HPV-16E7 had more isoforms with intron retention (IR) than those with HPV-84E7. We identified switches in ADAM10, CLSPN, and RNPS1 that led to greater expression of the coding isoforms in HR-HPV. The results of this work highlight differences between LR-HPV and HR-HPV in mRNA processing. Moreover, crucial cervical cancer-related switch events were detected.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Oncogenes , Proteínas E7 de Papillomavirus/genética , Queratinócitos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Cancers (Basel) ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672296

RESUMO

Cervical cancer (CC) is the fourth most common type of cancer among women; the main predisposing factor is persistent infection by high-risk human papillomavirus (hr-HPV), mainly the 16 or 18 genotypes. Both hr-HPVs are known to manipulate the cellular machinery and the immune system to favor cell transformation. FOXP3, a critical transcription factor involved in the biology of regulatory T cells, has been detected as highly expressed in the tumor cells of CC patients. However, its biological role in CC, particularly in the keratinocytes, remained unclarified. Therefore, this work aimed to uncover the effect of FOXP3 on the biology of the tumoral cells. First, public databases were analyzed to identify the FOXP3 expression levels and the transcribed isoforms in CC and normal tissue samples. The study's findings demonstrated an increased expression of FOXP3 in HPV16+ CC samples. Additionally, the FOXP3Δ2 variant was detected as the most frequent splicing isoform in tumoral cells, with a high differential expression level in metastatic samples. However, the analysis of FOXP3 expression in different CC cell lines, HPV+ and HPV-, suggests no relationship between the presence of HPV and FOXP3 expression. Since the variant FOXP3Δ2Δ7 was found highly expressed in the HPV16+ SiHa cell line, a model with constitutive expression of FOXP3Δ2Δ7 was established to evaluate its role in proliferation, migration, and cell division. Finally, RNAseq was performed to identify differentially expressed genes and enriched pathways modulated by FOXP3Δ2Δ7. The exogenous expression of FOXP3Δ2Δ7 promotes cell division, proliferation, and migration. The transcriptomic analyses highlight the upregulation of multiple genes with protumor activities. Moreover, immunological and oncogenic pathways were detected as highly enriched. These data support the hypothesis that FOXP3Δ2Δ7 in epithelial cells induces cancer-related hallmarks and provides information about the molecular events triggered by this isoform, which could be important for developing CC.

5.
Anticancer Agents Med Chem ; 23(5): 492-497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35579131

RESUMO

Cervical cancer (CC) is one of the most prevalent cancer-related pathologies in the female population. It is considered the second leading cause of cancer-related deaths in developing countries. The most important etiological factor for the development of CC is the persistent infection with high-risk human papillomavirus. HPV-oncoproteins have evolved to modulate cellular mechanisms to permit viral replication and the generation of new infectious viral particles. When the viral infection persists, there is an uncontrolled viral protein expression essential to commence and maintain the transformation of infected cells. Different cell pathways are affected during the transformation stage, including the NF-κB signaling pathway. NF-κB controls different cellular mechanisms, and its role is critical for various processes, such as immunity, inflammation, cell differentiation, growth, and survival. NF-κB plays a double role in the development of CC. Evidence suggests that in the early stages of viral infection, the NF-κB activity impairs viral transcription and is beneficial for avoiding cellular immortalization. However, in the advanced stages of cervical carcinogenesis, the activation of the NF-κB correlates with a poor prognosis. Here, we discuss some aspects of NF-κB activity during the development of CC and the use of NF-κB inhibitors to treat this pathology.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , NF-kappa B/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/terapia , Transdução de Sinais , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo
6.
Diagnostics (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428851

RESUMO

Acute lymphoblastic leukemia (ALL) in children or adults is characterized by structural and numeric aberrations in chromosomes; these anomalies strongly correlate with prognosis and clinical outcome. Therefore, this work aimed to identify the genes present in chromosomal gain regions found more frequently in patients with acute lymphoblastic leukemia (ALL) and ALL-derived cell lines using comparative genomic hybridization (CGH). In addition, validation of the genes found in these regions was performed utilizing RNAseq from JURKAT, CEM, and SUP-B15 cell lines, as well as expression microarrays derived from a MILE study. Chromosomes with common gain zones that were maintained in six or more samples were 14, 17, and 22, in which a total of 22 genes were identified. From them, NT5C3B, CNP, ACLY, and GNB1L maintained overexpression at the mRNA level in the cell lines and in patients with ALL. It is noteworthy that SALL2 showed very high expression in T-ALL, while JUP was highly expressed in B-ALL lineages. Interestingly, the latter correlated with worse survival in patients. This provided evidence that the measurement of these genes has high potential for clinical utility; however, their expressions should first be evaluated with a sensitive test in a more significant number of patients.

7.
Front Genet ; 13: 991706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338974

RESUMO

Breast cancer ranks first in terms of mortality and incidence rates worldwide among women. The HER2+ molecular subtype is one of the most aggressive subtypes; its treatment includes neoadjuvant chemotherapy and the use of a HER2 antibody. Some patients develop resistance despite positive results obtained using this therapeutic strategy. OBJECTIVE: To identify prognostic markers for treatment and survival in HER2+ patients. METHODS: Patients treated with neoadjuvant chemotherapy were assigned to sensitive and resistant groups based on their treatment response. Differentially expressed genes (DEGs) were identified using RNA-seq analysis. KEGG pathway, gene ontology, and interactome analyses were performed for all DEGs. An enrichment analysis Gene set enrichment analysis was performed. All DEGs were analyzed for overall (OS) and disease-free survival (DFS). RESULTS: A total of 94 DEGs were related to treatment resistance. Survival analysis showed that 12 genes (ATF6B, DHRS13, DIRAS1, ERAL1, GRIN2B, L1CAM, IRX3, PRTFDC1, PBX2, S100B, SLC9A3R2, and TNXB) were good predictors of disease-free survival, and eight genes (GNG4, IL22RA2, MICA, S100B, SERPINF2, HLA-A, DIRAS1, and TNXB) were good predictors of overall survival (OS). CONCLUSION: We highlighted a molecular expression signature that can differentiate the treatment response, overall survival, and DFS of patients with HER2+ breast cancer.

8.
Oncol Lett ; 24(2): 288, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35814823

RESUMO

Natural killer (NK) cells play a crucial role in cervical cancer (CC). As estrogens and prolactin (PRL) have been reported to be involved in CC, the present study attempted to elucidate the effects of both hormones on NK cells in CC. For this purpose, NKL cells, as well as CC-derived cell lines (HeLa, SiHa and C33A) and non-tumorigenic keratinocytes (HaCaT cells) were stimulated with 17ß-estradiol (E2; 10 nM), PRL (200 ng/ml), or both (E2 and PRL) for 48 h. The expression of hormone receptors (estrogen receptor α and ß, G protein-coupled estrogen receptor 1 and PRL receptor) and NK cell activating receptors [natural killer group 2D (NKG2D), natural cytotoxicity triggering receptor 3, natural cytotoxicity triggering receptor 2 and natural cytotoxicity triggering receptor 1] were measured using western blot analysis and flow cytometry, respectively. In the HeLa, SiHa, C33A and HaCaT cells stimulated with the hormones, the expression of NKG2D ligands [MHC class I polypeptide-related sequence A/B (MICA/B)] on the membrane and the soluble form of MICA was evaluated using flow cytometry and ELISA. Cytotoxicity assay was performed using GFP-transfected K562 cells as target cells. E2 reduced NKL cell-mediated cytotoxicity, while PRL exerted the opposite effect. NKL cells expressed different hormone receptor forms, of which PRL only induced a decrease in NKG2D expression compared to the untreated control NKL cells. PRL increased MICA/B expression in HeLa cells and E2 and PRL reversed this effect. However, in SiHa cells, the concurrent incubation with the two hormones decreased MICA/B expression. E2 and PRL, either alone or in combination, decreased soluble MICA secretion in all CC cell lines, while E2 solely increased soluble MICA secretion in SiHa cells. On the whole, the present study provides evidence that E2 and PRL mediate the mechanisms through which NK and CC cells mediate a cytotoxic response and these have an antagonistic effect on NK cell-mediated cytotoxicity.

9.
Technol Cancer Res Treat ; 21: 15330338211068965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34981997

RESUMO

Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein-protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine-cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Tomada de Decisão Clínica , Biologia Computacional , Gerenciamento Clínico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Terapia Neoadjuvante , Prognóstico , Mapeamento de Interação de Proteínas
10.
Exp Ther Med ; 21(5): 485, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33790994

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has become a serious global health problem and numerous studies are currently being conducted to improve understanding of the components of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, as well as to identify solutions that mitigate the effects of COVID-19 symptoms. The nutritional supplement Vita Deyun® is composed of silymarin, glutathione, vitamin C and selenium. Studies of its individual components have demonstrated their benefits as anti-inflammatory agents, antioxidants and enhancers of the immune response. Therefore, the present study aimed to evaluate the in vitro effects of Vita Deyun on the expression of angiotensin-converting enzyme 2 (ACE2) in diverse cell lines, as well as in the presence or absence of the SARS-CoV-2 open reading frame (ORF)3a protein. Through reverse transcription-quantitative PCR, the use of viral particles containing SARS-CoV-2 ORF3a and bioinformatics analysis via the National Center for Biotechnology Information databases, ACE2 was determined to be highly expressed in oral and skin epithelial cells, with a lower expression observed in lung cells. Notably, the expression of SARS-CoV-2 ORF3a increased the level of ACE2 expression and Vita Deyun treatment diminished this effect. In addition, Vita Deyun treatment markedly decreased interleukin-18 mRNA levels. The combination of phytonutrients in Vita Deyun may help to boost the immune system and could reduce the effects of COVID-19. Ongoing clinical studies are required to provide evidence of the efficacy of Vita Deyun.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA