Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 16(6)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34544052

RESUMO

Artemether (ART) and lumefantrine (LUM) are the gold standard antimalarial drugs used for the treatment of malaria in children and pregnant women. Typically, ART and LUM are delivered orally in the form of a combined tablet, however, the appropriateness of this route of administration for these drugs is questionable due to the poor absorption and therefore bioavailability observed unless administered alongside lipid-rich foods. Transdermal drug delivery in the form of a patch-type system has been identified as a viable alternative to the conventional tablet-based therapy. A novel, surfactant-based ART-LUM formulation (S3AL), developed for transdermal delivery, may eliminate the shortcomings associated with oral delivery; namely poor drug absorption which is caused by the inherently low solubility of ART and LUM. Moreover, by successfully delivering these antimalarials transdermally, first-pass metabolism will be avoided leading to enhanced drug bioavailability in both cases. The S3AL formulation contained ART and LUM at equal concentrations (2.5% w/w of each) as well as Procetyl® AWS (30% w/w), oleic acid (10% w/w), 1-methyl-2-pyrrolidone (10% w/w), and water (45% w/w). The addition of LUM to the formulation changed the system from a striae structure to a dark field structure when visualized by a polarized light microscope. Additionally, this system possessed higher viscosity and superior skin bioadhesion, as evidenced by mechanical characterization, when compared to a similar formulation containing ART alone. S3AL was also proven to be biocompatible to human keratinocyte cells. Finally,in vitrostudies demonstrated the propensity of S3AL for successful delivery via the transdermal route, with 2279 ± 295 µg cm-2of ART and 94 ± 13 µg cm-2of LUM having permeated across dermatomed porcine skin after 24 h, highlighting its potential as a new candidate for the treatment of malaria.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Tensoativos/química , Administração Cutânea , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/química , Combinação Arteméter e Lumefantrina/farmacocinética , Humanos , Pele/metabolismo , Solubilidade , Suínos
2.
J Pharm Sci ; 108(3): 1177-1188, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30336154

RESUMO

According to the most recent World Health Organization statistics, malaria infected approximately 219 million people in 2017, with an estimate of 435,000 deaths (World Health Organization, 2018). Communities isolated from cities are the most deprived of access to the necessary hospital facilities. Herein we report the development of a transdermal bioadhesive containing artemether (ART), an alternative, potentially lifesaving, treatment regimen for malaria in low-resource settings. Bioadhesives were prepared from an aqueous blend of hydroxyethylcellulose (4.5% w/w), ART, propoxylated-ethoxylated-cetyl-alcohol, polysorbate 80, propyleneglycol, glycerine, mineral oil, and oleic acid. In this study, the average pore size of bioadhesive 5.5b was 52.6 ± 15.31 µm. Differential scanning calorimetry and thermogravimetric analyses confirm the thermal stability of ART bioadhesives at room temperature. Tensile tests indicated good mechanical properties for bioadhesive 5.5b, when compared to 5.5a, where 5.5b showed elastic modulus 0.19 MPa, elongation at break 204%, tensile stress 0.31 MPa, tensile strength at break 0.23 MPa. Bioadhesion assays suggested that formulations containing surfactants had higher detachment forces. Permeation studies demonstrated that the best outcome was achieved with a bioadhesive containing 25 mg ART (5.5b) that after 24 h released 6971 ± 125 µg, which represents approximately 28% of drug permeation. Data reported presents a promising candidate for a new antimalarial transdermal formulation.


Assuntos
Antimaláricos/farmacocinética , Artemeter/farmacocinética , Malária Falciparum/tratamento farmacológico , Pele/metabolismo , Adesivo Transdérmico , Administração Cutânea , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Artemeter/administração & dosagem , Artemeter/química , Artemisia annua/química , Criança , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Malária Falciparum/parasitologia , Permeabilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA