Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 255: 119179, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768882

RESUMO

Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.


Assuntos
Poluentes Atmosféricos , Altitude , Cidades , Material Particulado , Material Particulado/análise , Bolívia/epidemiologia , Humanos , Poluentes Atmosféricos/análise , Adulto , Infecções Respiratórias/epidemiologia , Oxirredução , Masculino , Pessoa de Meia-Idade , Feminino , Pneumonia/epidemiologia , Pneumonia/induzido quimicamente , Adulto Jovem , Adolescente , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Criança , Monitoramento Ambiental/métodos , Pré-Escolar
2.
Environ Sci Pollut Res Int ; 29(24): 36255-36272, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060032

RESUMO

PM10 was collected during an EMEP winter campaign of 2017-2018 in two urban background sites in Barcelona (BCN) and Granada (GRA), two Mediterranean cities in the coast and inland, respectively. The concentrations of PM10, organic carbon (OC), elemental carbon (EC), and organic molecular tracer compounds such as hopanes, anhydro-saccharides, polycyclic aromatic hydrocarbon, and several biogenic and anthropogenic markers of secondary organic aerosols (SOA) were two times higher in GRA compared to BCN and related to the atmospheric mixing heights in the areas. Multivariate curve resolution (MCR-ALS) source apportionment analysis identified primary emissions sources (traffic + biomass burning) that were responsible for the 50% and 20% of the organic aerosol contributions in Granada and Barcelona, respectively. The contribution of biomass burning was higher in the holidays than in the working days in GRA while all primary combustion emissions decreased in holidays in BCN. The MCR-ALS identified that oxidative species and SOA formation processes contributed to 40% and 80% in Granada and Barcelona, respectively. Aged SOA was dominant in Granada and Barcelona under stagnant atmospheric conditions and in presence of air pollution. On the other hand, fresh SOA contributions from α-pinene oxidation (cis-pinonic acid) were three times higher in Barcelona than Granada and could be related to new particle formation, essentially due to overall cleaner air conditions and elevated air temperatures.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Cidades , Monitoramento Ambiental , Compostos Orgânicos/análise , Material Particulado/análise , Estações do Ano
3.
J Air Waste Manag Assoc ; 59(12): 1417-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20066907

RESUMO

Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Material Particulado/análise , Poluentes Atmosféricos/química , Cidades , Monitoramento Ambiental , México , Tamanho da Partícula , Material Particulado/química , Análise de Componente Principal
4.
Environ Sci Technol ; 42(17): 6502-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18800521

RESUMO

Relatively little is known about the lanthanoid element (La to Lu) chemistry of inhalable urban atmospheric particulate matter (PM). PM samples collected during an air sampling campaign in the Mexico City area contain lanthanoid concentrations of mostly 1-10 ng m(-3), increasing with mass where resuspension of crustal PM is important (low PM2.5/PM10), but not where fine emissions from traffic and industry dominate (high PM2.5/ PM10). Samples show anthropogenic enrichment of lighter over heavier lanthanoids, and Ce enrichment relative to La and Sm occurs in the city center (especially PM10) possibly due to PM from road vehicle catalytic converters. La is especially enriched, although many samples show low La/V values (< 0.11), suggesting the dominating influence of fuel oil combustion sources rather than refinery emissions. We use La/Sm v La/ Ce, LaCeSm, and LaCeV plots to compare Mexico City aerosols with PM from other cities. Lanthanoid aerosol geochemistry can be used not only to identify refinery pollution events, but also as a marker for different hydrocarbon combustion emissions (e.g., oil or coal power stations) on urban background atmospheric PM.


Assuntos
Poluentes Atmosféricos/química , Atmosfera , Elementos da Série dos Lantanídeos/química , Saúde da População Urbana , Cério/química , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA