Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Synapse ; 78(1): e22282, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37794768

RESUMO

Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex.


Assuntos
Eritropoetina , Consolidação da Memória , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Eritropoetina/farmacologia , Eritropoetina/metabolismo , Receptores da Eritropoetina/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Memória de Longo Prazo
2.
Behav Sci (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066049

RESUMO

Neurotoxic lesion of the pedunculopontine nucleus (PPN) is known to cause subtle motor dysfunctions. However, motor coordination during advance on a discontinuous and elevated surface has not been studied. It is also not known whether there are changes in the mRNA expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in nigral tissue. METHODS: The effects of the unilateral neurotoxic lesion of the PPN in motor coordination evaluated through grid test and Nrf2 mRNA expression in nigral tissue were evaluated. Two experimental designs (ED) were organized: ED#1 behavioral study (7 and 30 days after PPN lesion) and ED#2 molecular biology study (24 h, 48 h and 7 days) after PPN lesion. RESULTS: ED#1-The number of faults made with left limbs, were significant higher in the lesioned groups (p < 0.01) both 7 and 30 days post-lesion. The number of failures made by the right limbs, was also significantly higher (p < 0.05) vs. control groups. ED#2-Nrf2 mRNA expression showed an increase 24 h after PPN injury (p < 0.01), followed by a peak of expression 48 h post injury (p < 0.001). CONCLUSIONS: Disorders of motor coordination associated with PPN injury are bilateral. The increased Nrf2 mRNA expression could represent an adaptive response to oxidative stress in the nigral tissue following pontine injury.

3.
Synapse ; 74(12): e22179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32621298

RESUMO

Recently we provided data showing that amygdala stimulation can ameliorate spatial memory impairments in rats with lesion in the fimbria-fornix (FF). The mechanisms for this improvement involve early gene expression and synthesis of BDNF, MAP-2, and GAP43 in the hippocampus and prefrontal cortex. Now we have studied which brain structures are activated by the amygdala using c-Fos as a marker of neural activation. First, we studied neuronal activation after tetanic stimulation to the amygdala in intact rats. We then carried out a second study in FF-lesioned rats in which the amygdala was stimulated 15 min after daily spatial memory training in the water maze. Our results showed that amygdala stimulation produces widespread brain activation, that includes cortical, thalamic, and brain stem structures. Activation was particularly intense in the dentate gyrus and the prefrontal cortex. Training in the water maze increased c-Fos positive nuclei in the dentate gyrus of the hippocampus and in medial prefrontal cortex. Amygdala stimulation to trained FF-lesioned rats induced an increase of neural activity in the dentate gyrus and medial prefrontal cortex relative to the FF-lesioned, but not stimulated group, like the c-Fos activity seen in trained control rats. Based on these and previous results we explain the mechanisms of amygdala reinforcement of neural plasticity and the partial recovery of spatial memory deficits.


Assuntos
Tonsila do Cerebelo/fisiologia , Excitabilidade Cortical , Fórnice/fisiologia , Transtornos da Memória/terapia , Memória Espacial , Tonsila do Cerebelo/fisiopatologia , Animais , Estimulação Encefálica Profunda/métodos , Fórnice/metabolismo , Fórnice/fisiopatologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
4.
Medicina (Kaunas) ; 55(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547185

RESUMO

Background and Objectives: The knowledge that the cholinergic neurons from pedunculopontine nucleus (PPN) are vulnerable to the degeneration in early stages of the Parkinson disease progression has opened new perspectives to the development of experimental model focused in pontine lesions that could increase the risk of nigral degeneration. In this context it is known that PPN lesioned rats exhibit early changes in the gene expression of proteins responsible for dopaminergic homeostasis. At the same time, it is known that nicotinic cholinergic receptors (nAChRs) mediate the excitatory influence of pontine-nigral projection. However, the effect of PPN injury on the expression of transcription factors that modulate dopaminergic neurotransmission in the adult brain as well as the α7 nAChRs gene expression has not been studied. The main objective of the present work was the study of the effects of the unilateral neurotoxic lesion of PPN in nuclear receptor-related factor 1 (Nurr1), paired-like homeodomain transcription factor 3 (Pitx3), and α7 nAChRs mRNA expression in nigral tissue. Materials and Methods: The molecular biology studies were performed by means of RT-PCR. The following experimental groups were organized: Non-treated rats, N-methyl-D-aspartate (NMDA)-lesioned rats, and Sham operated rats. Experimental subjects were sacrificed 24 h, 48 h and seven days after PPN lesion. Results: Nurr1 mRNA expression, showed a significant increase both 24 h (p < 0.001) and 48 h (p < 0.01) after PPN injury. Pitx3 mRNA expression evidenced a significant increase 24 h (p < 0.001) followed by a significant decrease 48 h and seven days after PPN lesion (p < 0.01). Finally, the α7 nAChRs nigral mRNA expression remained significantly diminished 24 h, 48 h (p < 0.001), and 7 days (p < 0.01) after PPN neurotoxic injury. Conclusion: Taking together these modifications could represent early warning signals and could be the preamble to nigral neurodegeneration events.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , RNA Mensageiro/metabolismo , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Masculino , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Doença de Parkinson/patologia , Núcleo Tegmental Pedunculopontino/patologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
5.
Behav Sci (Basel) ; 8(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241338

RESUMO

Huntington's disease (HD) is an inherited, neurodegenerative disorder that results from the degeneration of striatal neurons, mainly GABAergic neurons. The study of neurochemical activity has provided reliable markers to explain motor disorders. To treat neurodegenerative diseases, stem cell transplants with bone marrow (BM) have been performed for several decades. In this work we determine the effect of mononuclear bone marrow cell (mBMC) transplantation on the rotational behavior and neurochemical activity in a model of Huntington's disease in rats. Four experimental groups were organized: Group I: Control animals (n = 5); Group II: Lesion with quinolinic acid (QA) in the striatum (n = 5); Group III: Lesion with QA and transplant with mBMC (n = 5); Group IV: Lesion with QA and transplant with culture medium (Dulbecco's modified Eagle's medium (DMEM) injection) (n = 5). The rotational activity induced by D-amphetamine was evaluated and the concentration of the neurotransmitter amino acids (glutamate and GABA) was studied. The striatal cell transplantation decreases the rotations induced by D-amphetamine (p < 0.04, Wilcoxon matched pairs test) and improves the changes produced in the levels of neurotransmitters studied. This work suggests that the loss of GABAergic neurons in the brain of rats lesioned with AQ produces behavioral and neurochemical alterations that can be reversed with the use of bone marrow mononuclear cell transplants.

6.
Behav Sci (Basel) ; 8(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389881

RESUMO

BACKGROUND: The degeneration of the pedunculopontine nucleus (PPN) precedes the degeneration of the nigral cells in the pre-symptomatic stages of Parkinson's disease (PD). Although the literature recognizes that a lesion of the PPN increases the vulnerability of dopaminergic cells, it is unknown if this risk is associated with the loss of capability of handling the dopaminergic function. METHODS: In this paper, the effects of a unilateral neurotoxic lesion of the PPN in tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) mRNA expression in nigrostriatal tissue were evaluated. Three experimental groups were organized: non-treated rats, NMDA-lesioned rats and Sham-operated rats. RESULTS: Seven days after the PPN lesion, in nigral tissue, TH mRNA expression was higher in comparison with control groups (p < 0.05); in contrast, VMAT2 mRNA expression showed a significant decrease (p < 0.01). DAT mRNA expression showed a significant decrease (p < 0.001) in the striatal tissue. Comparing nigral neuronal density of injured and control rats revealed no significant difference seven days post-PPN injury. CONCLUSIONS: Findings suggest that the PPN lesion modifies the mRNA expression of the proteins associated with dopaminergic homeostasis at nigrostriatal level. It could represent vulnerability signals for nigral dopaminergic cells and further increase the risk of degeneration of these cells.

7.
Neurorehabil Neural Repair ; 29(10): 979-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847024

RESUMO

BACKGROUND: Erythropoietin (EPO) upregulates the mitogen activated protein kinase (MAPK) cascade, a central signaling pathway in cellular plastic mechanisms, and is critical for normal brain development. OBJECTIVE: We hypothesized that EPO could modulate the plasticity mechanisms supporting spatial memory recovery in fimbria-fornix-transected animals. METHODS: Fimbria-fornix was transected in 3 groups of rats. Seven days later, EPO was injected daily for 4 consecutive days within 10 minutes after training on a water maze task. RESULTS: Our results show that EPO injections 10 minutes after training produced a substantial spatial memory recovery in fimbria-fornix-lesioned animals. In contrast, an EPO injection shortly after fimbria-fornix lesion surgery does not promote spatial-memory recovery. Neither does daily EPO injection 5 hours after the water maze performance. EPO, on the other hand, induced the expression of plasticity-related genes like arc and bdnf, but this effect was independent of training or lesion. CONCLUSIONS: This finding supports our working hypothesis that EPO can modulate transient neuroplastic mechanisms triggered by training in lesioned animals. Consequently, we propose that EPO administration can be a useful trophic factor to promote neural restoration when given in combination with training.


Assuntos
Eritropoetina/uso terapêutico , Fórnice/lesões , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Análise de Variância , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Fórnice/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hemoglobinas/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 109(3): 953-8, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22215603

RESUMO

Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.


Assuntos
Eletrochoque , Comportamento Exploratório , Pé/patologia , Transtornos da Memória/fisiopatologia , Memória/fisiologia , Sinapses/metabolismo , Animais , Regulação da Expressão Gênica , Masculino , Aprendizagem em Labirinto , Biossíntese de Proteínas , Ratos , Ratos Wistar , Fatores de Tempo
9.
Rev. colomb. biotecnol ; 13(2): 107-126, dic 1, 2011. tab, graf
Artigo em Espanhol | LILACS | ID: lil-645172

RESUMO

La enfermedad de Huntington (EH) es un trastorno degenerativo hereditario que afecta a personas con predisposición genética. No existe hasta hoy un tratamiento efectivo; la enfermedad avanza lentamente y el paciente termina en incapacidad o muerte después de 15 o 20 años. Los estudios relacionados con el tratamiento de las manifestaciones clínicas que aparecen en la enfermedad, incluyen tratamientos medicamentosos y el uso de trasplante de células. En la actualidad se conoce que es posible reproducir algunas características de la enfermedad en modelos experimentales para ensayar posibles terapéuticas (ej. el modelo de lesión estriatal por inyección de ácido quinolínico; [AQ]). No se conoce el efecto restaurativo de las células de médula ósea (CMO) en este modelo. Objetivos: 1) Caracterizar morfológicamente la lesión por inyección intraestriatal de AQ. 2) Caracterizar inmunocitoquímicamente las CMO. 3) Evaluar la concentración óptima de CMO para el trasplante en el modelo y 4) Evaluar el estado funcional del trasplante de CMO, a través de la conducta motora.


Huntington Disease (HD) is a heritable neurodegenerative disease that affects people with genetic history. Until today, an effective treatment doesn't exist; the illness advances slowly and the patient finishes in inability or death after 15 or 20 years. The studies related with the treatment of the clinical manifestations, include treatments with medications and the use of cells transplant. At the present time it is known that it is possible to reproduce, some characteristics of the disease in experimental models for to use possible therapies [example: estriatal lesion of quinolínico acid; (QA)]. the restorative effect of the bone marrow cells (BMC) is not known in this model. Objectives. 1) characterizationmorphofological of the estriatal lesion whith QA. 2) to characterization immunochemical of BMC. 3) to evaluate the BMC concentration for the transplant and 4) to evaluate the functional state of BMC transplant, through the motor behavior.


Assuntos
Doença de Huntington/induzido quimicamente , Doença de Huntington/radioterapia , Doença de Huntington/sangue , Doença de Huntington , Medula Óssea/anormalidades , Medula Óssea/irrigação sanguínea
10.
Acta biol. colomb ; 16(1): 21-42, abr. 2011.
Artigo em Espanhol | LILACS | ID: lil-635070

RESUMO

La enfermedad de Huntington (EH) es un trastorno degenerativo de Weiss de origen hereditario. Hasta el momento no existe un tratamiento efectivo para la enfermedad que inexorablemente después de transcurridos 15 a 20 años, evoluciona hacia incapacidad total o muerte. En este trabajo se revisan las características clínicas y morfológicas de la EH y los modelos experimentales más utilizados para su estudio tomando como fuente, artículos indexados en la base de datos Medline publicados en los últimos 20 años. Se valoran las ventajas y desventajas de estos modelos y su perspectiva para el desarrollo de ensayos clínicos. El consenso de lo reportado plantea que de los modelos tóxicos, los inducidos por neurotoxinas tales como ácido quinolínico parecen ser los más adecuados para reproducir las características neuropatológicas, y por otro lado los modelos genéticos contribuyen con más evidencias al conocimiento del origen etiológico de la enfermedad. Numerosos tratamientos han sido aplicados en el manejo de las manifestaciones clínicas que aparecen en EH, sin poder detener o disminuir las afectaciones que derivan de la pérdida neuronal. La sintomatología clínica ha sido posible reproducirla, al menos en parte, en animales de experimentación lo que ha permitido realizar ensayos terapéuticos. Desde el punto de vista de tratamiento, lo que más promisorio parece ser, la terapia celular con células provenientes de diferentes fuentes y dentro de ellas las no neurales, que implican menor censura ética y mayor factibilidad de obtención para la aplicación en los enfermos. Por otro lado el desarrollo de la tecnología del ARN de interferencia, emerge como una herramienta terapéutica potencial para el tratamiento de EH, así como para responder interrogantes básicas relacionadas con el desarrollo de la enfermedad.


Huntington'disease (HD) is a degenerative dysfunction of hereditary origin. Up to date there is not, an effective treatment to the disease which having lapsed 15 or 20 years advances inexorably, in a slow form, toward the total inability or death. This paper reviews the clinical and morphological characteristics of Huntington's disease as well as the experimental models more commonly used t study this disease, having as source the articles indexed in Medline data base, published in the last 20 years. Advantages and disadvantages of all experimental models to reproduce the disease as well as the perspectives to therapeutic assay have been also considered. The consent of outline reported about the toxic models, those induced by neurotoxins such as quinolinic acid, appears to be the most appropiate to reproduce the neuropathologic characteristic of the disease, an genetic models contributing with more evidence to the knowledge of the disease ethiology. Numerous treatments ameliorate clinical manifestations, but none of them has been able to stop or diminish the affectations derived from neuronal loss. At present time it is possible to reproduce, at least partially, the characteristics of the disease in experimentation animals that allow therapy evaluation in HD. From the treatment view point, the more promissory seems to be transplantation of no neuronal cells, taking into account ethical issues and factibility. On the other hand the new technology of interference RNA, emerges as a potential therapeutic tool for treatment in HD, and to respond basic questions on the development of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA