Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 38: 256-270, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633825

RESUMO

Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100°C and 200°C have water molecules in their lattice (copper tungstate dihydrate (CuWO4·2H2O) with monoclinic structure), when the crystals are calcinated at 300°C have the presence of two phase (CuWO4·2H2O and CuWO4), while the others heat treated at 400°C and 500°C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet-Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300°C for 1h, which have a mixture of CuWO4·2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions.

2.
Inorg Chem ; 51(20): 10675-87, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22998627

RESUMO

In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (α-Ag(2)WO(4)) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these α-Ag(2)WO(4) microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that α-Ag(2)WO(4) microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L(3)-edge showed distorted octahedral [WO(6)] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the α-Ag(2)WO(4) microcrystals grow by aggregation and the Ostwald ripening process. PL properties of α-Ag(2)WO(4) microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like α-Ag(2)WO(4) microcrystals prepared by the SC method exhibited a major PL emission intensity relative to α-Ag(2)WO(4) microcrystals prepared by the CP and CH methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA