Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Physiol ; 15: 1263475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304114

RESUMO

The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.

2.
Insects ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132628

RESUMO

Research on larval rearing and nutrition of tephritid flies on artificial diets is key for the sterile insect technique. Here, we examined the effects of the type of gel (calcium alginate, agar, or carrageenan), at varying percentages in artificial diets for the polyphagous pest Anastrepha ludens, on the physicochemical and nutritional traits of the diets, and the effects of the type of gel, the gel content and the larval density (larvae/g of diet) used in production, quality parameters for mass-reared tephritids, diet removal (an indirect estimation of diet consumption), and nutritional traits of flies. Regardless of the gel content, calcium alginate diets were firmer and more resistant to penetration than the agar and carrageenan diets. The larval recovery, pupation, pupal weight, and flight ability of A. ludens were lower in calcium alginate diets than in agar and carrageenan diets. Diet removal was higher in calcium alginate diets; however, low levels of ammonium and high levels of uric acid in excretions from larvae on these diets suggest an alteration in protein metabolism. The firmness and penetration resistance characteristics of calcium alginate diets may have limited movement and feeding of larvae, but this could be overcome by the collective feeding of large groups of larvae. Our findings provide insights into the mechanism governing gel-diet rearing systems for A. ludens.

3.
Insects ; 14(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504658

RESUMO

Using light, transmission, scanning electron, and confocal microscopy, we carried out a morphological study of antennal sensilla and their ultrastructures of the Mexican Fruit Fly Anastrepha ludens (Loew), an economically important species that is a pest of mangos and citrus in Mexico and Central America. Our goal was to update the known information on the various sensilla in the antennae of A. ludens, involved in the perception of odors, temperature, humidity, and movement. Based on their external shape, size, cuticle-thickness, and presence of pores, we identified six types of sensilla with 16 subtypes (one chaetica in the pedicel, four clavate, two trichoid, four basiconic, one styloconic, and one campaniform-like in the flagellum, and three additional ones in the two chambers of the sensory pit (pit-basiconic I and II, and pit-styloconic)), some of them described for the first time in A. ludens. We also report, for the first time, two types of pores in the sensilla (hourglass and wedge shapes) that helped classify the sensilla. Additionally, we report a campaniform-like sensillum only observed by transmission electronic microscopy on the flagellum, styloconic and basiconic variants inside the sensory pit, and an "hourglass-shaped" pore in six sensilla types. We discuss and suggest the possible function of each sensillum according to their characteristics and unify previously used criteria in the only previous study on the topic.

4.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237551

RESUMO

Anastrepha ludens is a polyphagous frugivorous tephritid that infests citrus and mango. Here, we report the establishment of a laboratory colony of A. ludens reared on a larval medium that is a waste for the citrus industry, specifically, orange (Citrus × sinensis) fruit bagasse. After 24 generations of rearing on a nutritionally poor orange bagasse diet, pupae weighed 41.1% less than pupae from a colony reared on a nutritionally rich artificial diet. Larvae from the orange bagasse diet had 6.94% less protein content than larvae from the artificial diet, although their pupation rate was similar. Males from the orange bagasse diet produced a scent bouquet with 21 chemical compounds and were sexually competitive, but they had significantly shorter copulations when compared to males from the artificial diet and from the wild host, Casimiroa edulis, which had relatively simple scent bouquets. The chemical complexity in the odors of males from the orange bagasse diet might initially have attracted females to novel scent combinations, but, once in the copula, they may have been able to sense negative characteristics in males, leading them to terminate copulations soon after they began. We conclude that A. ludens can adjust morphological, life history, nutritional, and chemical traits when adapted to a larval environment consisting of fruit bagasse.

5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768387

RESUMO

Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.


Assuntos
Magnoliopsida , Persea , Tephritidae , Animais , Feminino , Oviposição , Tephritidae/genética , Frutas
6.
Artigo em Inglês | MEDLINE | ID: mdl-36574190

RESUMO

Safety assessment of probiotics is difficult but essential. In this work, the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), was used as in vivo model to assess the biosafety of Limosilactobacillus fermentum J23. In the first set of experiments, the strain was orally administered to adult flies through direct feeding, whereas in the second set of experiments, it was supplemented through the larval rearing medium. Data showed that L. fermentum J23 did not lead to increased mortality or treatment-related toxicity signs in adult female and male flies. Ingestion of L. fermentum J23 by adult female flies led to a statistically significant improvement in locomotor activity compared to the control groups (ca. 59% decrease in climbing time, p < 0.0001). A positive trend in lifespan extension under stress (maximum lifespan = 144 h) was also observed. When L. fermentum J23 was administered to the larvae, the adult emergence (p = 0.0099), sex ratio (p = 0.0043), and flight ability (p = 0.0009) increased significantly by 7%, 31%, and 8%, respectively, compared to the control diet. No statistical effect between the control diet and the L. fermentum J23-based diet for the number of pupae recovered, pupal weight, duration of the pupal stage, lifespan under stress, and morphological development was observed. We conclude that feeding L. fermentum J23 to the novel experimental model A. ludens had no toxic effects and could be safely considered a potential probiotic for food supplements; however, further studies are still needed to establish its biosafety in humans.

7.
Front Microbiol ; 13: 979817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246214

RESUMO

The gut microbiota is key for the homeostasis of many phytophagous insects, but there are few studies comparing its role on host use by stenophagous or polyphagous frugivores. Guava (Psidium guajava) is a fruit infested in nature by the tephritids Anastrepha striata and A. fraterculus. In contrast, the extremely polyphagous A. ludens infests guava only under artificial conditions, but unlike A. striata and the Mexican A. fraterculus, it infests bitter oranges (Citrus x aurantium). We used these models to analyze whether the gut microbiota could explain the differences in host use observed in these flies. We compared the gut microbiota of the larvae of the three species when they developed in guava and the microbiota of the fruit pulp larvae fed on. We also compared the gut microbiota of A. ludens developing in C. x aurantium with the pulp microbiota of this widely used host. The three flies modified the composition of the host pulp microbiota (i.e., pulp the larvae fed on). We observed a depletion of Acetic Acid Bacteria (AAB) associated with a deleterious phenotype in A. ludens when infesting P. guajava. In contrast, the ability of A. striata and A. fraterculus to infest this fruit is likely associated to a symbiotic interaction with species of the Komagataeibacter genus, which are known to degrade a wide spectrum of tannins and polyphenols. The three flies establish genera specific symbiotic associations with AABs. In the case of A. ludens, the association is with Gluconobacter and Acetobacter, but importantly, it cannot be colonized by Komagataeibacter, a factor likely inhibiting its development in guava.

8.
Front Physiol ; 13: 991923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304579

RESUMO

Climate change, particularly global warming, is disturbing biological processes in unexpected ways and forcing us to re-study/reanalyze the effects of varying temperatures, among them extreme ones, on insect functional traits such as lifespan and fecundity/fertility. Here we experimentally tested, under both laboratory and field conditions, the effects of an extreme range of temperatures (5, 10, 15, 20, 30, 40, and 45 °C, and the naturally varying conditions experienced in the field), on survivorship/lifespan, fecundity, and fertility of four pestiferous fruit fly species exhibiting contrasting life histories and belonging to two phylogenetic groups within the genus Anastrepha: A. ludens, A. obliqua, A. striata, and A. serpentina. In the field, we also measured the length of the entire life cycle (egg to adult), and in one species (A. ludens), the effect on the latter of the host plant (mango and grapefruit). Under laboratory conditions, none of the adults, independent of species, could survive a single day when exposed to a constant temperature of 45 °C, but A. striata and A. serpentina females/males survived at the highly contrasting temperatures of 5 and 40 °C at least 7 days. Maximum longevity was achieved in all species at 15 °C (375, 225, 175 and 160 days in A. ludens, A. serpentina, A. striata and A. obliqua females, respectively). Anastrepha ludens layed many eggs until late in life (368 days) at 15 °C, but none eclosed. Eclosion was only observed in all species at 20 and 30 °C. Under natural conditions, flies lived ca. 100 days less than in the laboratory at 15 °C, likely due to the physiological cost of dealing with the highly varying environmental patterns over 24 h (minimum and maximum temperatures and relative humidity of ca. 10-40 °C, and 22-100%, respectively). In the case of A. ludens, the immature's developmental time was shorter in mango, but adult survival was longer than in grapefruit. We discuss our results considering the physiological processes regulating the traits measured and tie them to the increasing problem of global warming and its hidden effects on the physiology of insects, as well as the ecological and pest management implications.

9.
Proc Biol Sci ; 289(1977): 20212806, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765836

RESUMO

Seminal fluid proteins (Sfps) modify female phenotypes and have wide-ranging evolutionary implications on fitness in many insects. However, in the Mexican fruit fly, Anastrepha ludens, a highly destructive agricultural pest, the functions of Sfps are still largely unknown. To gain insights into female phenotypes regulated by Sfps, we used nano-liquid chromatography mass spectrometry to conduct a proteomic analysis of the soluble proteins from reproductive organs of A. ludens. The proteins predicted to be transferred from males to females during copulation were 100 proteins from the accessory glands, 69 from the testes and 20 from the ejaculatory bulb, resulting in 141 unique proteins after accounting for redundancies from multiple tissues. These 141 included orthologues to Drosophila melanogaster proteins involved mainly in oogenesis, spermatogenesis, immune response, lifespan and fecundity. In particular, we found one protein associated with female olfactory response to repellent stimuli (Scribble), and two related to memory formation (aPKC and Shibire). Together, these results raise the possibility that A. ludens Sfps could play a role in regulating female olfactory responses and memory formation and could be indicative of novel evolutionary functions in this important agricultural pest.


Assuntos
Proteínas de Drosophila , Tephritidae , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteômica/métodos , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo , Tephritidae/metabolismo
10.
Insects ; 13(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35206715

RESUMO

With the aim of identifying key factors that determine oviposition decisions by Anastrepha obliqua for management purposes, we conducted a behavioral study under natural/semi-natural field conditions to identify where exactly in the fruit (upper, middle, or lower sections) females preferred to lay eggs in a highly susceptible mango cultivar ("Criollo"), and whether sunlight incidence and fruit chemical compounds influenced oviposition site selection by this pestiferous fly. Females oviposited in shaded, upper fruit sections where pulp had higher total carbohydrate concentrations but similar total protein, lipid, and polyphenol concentrations than non-oviposited sections. Peel had higher overall nutrient and mangiferin/quercetin-3-D-galactoside (polyphenols) concentrations. An untargeted metabolomic analysis of oviposited and non-oviposited fruit sections identified abscisic acid (ABA) and dihydrophaseic acid glucoside, a by-product of ABA catabolism, as potential chemical markers that could play a role in fruit acceptance behaviors by female flies. We conclude that females preferentially oviposit in fruit sections with optimal chemical and environmental conditions for larval development: more carbohydrates and antioxidants such as mangiferin and ferulic acid and lesser sunlight exposure to avoid lethal egg/larval desiccation/overheating. We make specific recommendations for A. obliqua management based on female host selection behavior, a tree pruning scheme exposing fruit to direct sunlight, application of a host marking pheromone, and the use of egg sinks in the orchard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA