Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 175: 112778, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31352171

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite responsible for toxoplasmosis, which affects humans and animals. Serologic detection of anti-T. gondii immunoglobulins plays a crucial role in the clinical diagnosis of toxoplasmosis. In this work, a novel electrochemical immunosensor for detecting anti-T. gondii immunoglobulins is reported, based on immobilization of an in silico predicted peptide (PepB3), obtained from membrane protein of T. gondii, on the graphite electrode modified with poly(3-hydroxybenzoic acid). Indirect ELISA confirmed infection and binding specificity of peptide PepB3. Molecular modelling and simulations show this peptide binds to the T. gondii human Fab antibody in the surface antigen 1 (SAG1) binding site, remaining a stable complex during the molecular dynamic simulations, especially by hydrogen bonds and hydrophobic interactions. This electrochemical immunosensor was able to discriminate different periods of infection, using infected mouse serum samples, showing selectivity and discriminating infected and uninfected mouse serum.


Assuntos
Anticorpos Antiprotozoários/imunologia , Imunoglobulinas/imunologia , Peptídeos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Camundongos , Proteínas de Protozoários/imunologia , Sensibilidade e Especificidade
2.
J Pharm Biomed Anal ; 145: 838-844, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28826142

RESUMO

This work describes an approach for the selection and detection of specific DNA probes related to Toxoplasma gondii, a protozoan parasite responsible for toxoplasmosis. The detection system was developed on graphite carbon electrode modified with poly(3-hydroxybenzoic acid) sensitized with ToxG1 probe. The hybridization of the specific genomic DNA related to T. gondii showed good response by direct detection of guanine residue oxidation using differential pulse voltammetry (DPV). The biosensor was able to distinguish both the complementary and non-complementary targets and detect up to 100ngµL-1 of the T. gondii genomic DNA. The hybridization (ToxG1: T. gondii genomic DNA) was confirmed by optical measurement. Optical assays using gold nanoparticles:ToxG1 probe showed a significant change in the absorbance peak in the presence of the T. gondii genomic DNA according to the electrochemical results. This novel biosensor shows potential as electrochemical transducer and was successfully applied in the biological sample.


Assuntos
Toxoplasma , DNA , Genômica , Hidroxibenzoatos , Toxoplasmose
3.
Biologicals ; 50: 109-116, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28822684

RESUMO

Polyclonal antibodies raised in Balb-c mice against BnSP-7, a Lys-49 phospholipase A2, were used to measure cross reactivity against other snake venoms. Using ELISA, these antibodies were able to recognize PLA2s isoforms present in venoms of botropic snakes at 1:6400, 1:3200 and 1:100 ratios (w/w). These antibodies highly recognized proteins of low molecular weight (∼14,000) from crude snake venom Bp and Bm by Western Blotting. PLA2 these venoms, by alignment of primary structures demonstrated high identity with BnSP-7 PLA2, especially in the C-terminal region. However, the crude snake venom Bd and Bj, showed low recognition. The PLA2 activity of Bothrops pauloensis, Bothrops moojeni venoms or BpPLA2-TXI was inhibited significantly when anti-BnSP-7 antibodies were incubated at 1:10 and 1:20 ratios (venoms or toxin:anti-BnSP-7, w/w), respectively. The myotoxic effect induced by the same venoms was also reduced significantly at 1:1, 1:10 and 1:20 ratios, by decreased creatine kinase levels. The anti-PLA2 polyclonal antibodies effectively recognized PLA2s from Bothrops pauloensis and Bothrops moojeni venoms, and neutralized specific catalytic and myotoxic activity.


Assuntos
Anticorpos Monoclonais/imunologia , Bothrops/imunologia , Reações Cruzadas/imunologia , Venenos de Crotalídeos/imunologia , Fosfolipases A2/imunologia , Venenos de Serpentes/imunologia , Sequência de Aminoácidos , Animais , Western Blotting , Bothrops/classificação , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Homologia de Sequência de Aminoácidos , Venenos de Serpentes/metabolismo , Especificidade da Espécie
4.
Rev. bras. farmacogn ; 21(3): 477-485, maio-jun. 2011. ilus, graf
Artigo em Inglês | LILACS | ID: lil-593279

RESUMO

The effect of an L-amino acid oxidase isolated from Bothrops pirajai snake venom (BpirLAAO-I) was investigated on infection of Toxoplasma gondii in human foreskin fibroblasts (HFF). The cytotoxic activity of BpirLAAO-I on HFF cells showed a dose-dependent toxicity with median cytotoxic dose (TD50) of 11.8 µg/mL. BpirLAAO-I induced considerable dose-dependent decrease in the T. gondii infection index under two different conditions, treatment of tachyzoites before infection or treatment of HFF cells after infection. A maximal inhibition of infection (56 percent) was found for treatment before infection, with a median inhibitory dose (ID50) at 1.83 µg/mL and selectivity index (SI) at 6.45. For treatment after infection, it was observed a maximal inhibition of infection at 65 percent, ID50 of 1.20 µg/mL and SI of 9.83. The treatment before infection was also effective to reduce intracellular parasitism up to 62 percent, although presenting higher values of ID50 (3.14 µg/mL) and lower values of SI (3.76). However, treatment after infection was not effective, suggesting that the enzyme seems to have no effect on the parasite intracellular replication for this condition. In conclusion, BpirLAAO-I was more effective to inhibit the infection of neighboring cells and consequently parasite dissemination than primary infection and parasite replication. Thus, the effect of BpirLAAO-I described herein could be taken into account for the development of new synthetic anti-parasite therapeutic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA