Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39056949

RESUMO

The Biswas-Chatterjee-Sen (BChS) model of opinion dynamics has been studied on three-dimensional Solomon networks by means of extensive Monte Carlo simulations. Finite-size scaling relations for different lattice sizes have been used in order to obtain the relevant quantities of the system in the thermodynamic limit. From the simulation data it is clear that the BChS model undergoes a second-order phase transition. At the transition point, the critical exponents describing the behavior of the order parameter, the corresponding order parameter susceptibility, and the correlation length, have been evaluated. From the values obtained for these critical exponents one can confidently conclude that the BChS model in three dimensions is in a different universality class to the respective model defined on one- and two-dimensional Solomon networks, as well as in a different universality class as the usual Ising model on the same networks.

2.
J Biol Phys ; 49(3): 329-343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118345

RESUMO

We present an analysis of an epidemic spreading process on an Apollonian network that can describe an epidemic spreading in a non-sedentary population. We studied the modified diffusive epidemic process using the Monte Carlo method by computational analysis. Our model may be helpful for modeling systems closer to reality consisting of two classes of individuals: susceptible (A) and infected (B). The individuals can diffuse in a network according to constant diffusion rates [Formula: see text] and [Formula: see text], for the classes A and B, respectively, and obeying three diffusive regimes, i.e., [Formula: see text], [Formula: see text], and [Formula: see text]. Into the same site i, the reaction occurs according to the dynamical rule based on Gillespie's algorithm. Finite-size scaling analysis has shown that our model exhibits continuous phase transition to an absorbing state with a set of critical exponents given by [Formula: see text], [Formula: see text], and [Formula: see text] familiar to every investigated regime. In summary, the continuous phase transition, characterized by this set of critical exponents, does not have the same exponents of the mean-field universality class in both regular lattices and complex networks.


Assuntos
Algoritmos , Epidemias , Humanos , Simulação por Computador , Modelos Biológicos , Difusão
3.
Entropy (Basel) ; 25(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36832551

RESUMO

A discrete version of opinion dynamics systems, based on the Biswas-Chatterjee-Sen (BChS) model, has been studied on Barabási-Albert networks (BANs). In this model, depending on a pre-defined noise parameter, the mutual affinities can assign either positive or negative values. By employing extensive computer simulations with Monte Carlo algorithms, allied with finite-size scaling hypothesis, second-order phase transitions have been observed. The corresponding critical noise and the usual ratios of the critical exponents have been computed, in the thermodynamic limit, as a function of the average connectivity. The effective dimension of the system, defined through a hyper-scaling relation, is close to one, and it turns out to be connectivity-independent. The results also indicate that the discrete BChS model has a similar behavior on directed Barabási-Albert networks (DBANs), as well as on Erdös-Rènyi random graphs (ERRGs) and directed ERRGs random graphs (DERRGs). However, unlike the model on ERRGs and DERRGs, which has the same critical behavior for the average connectivity going to infinity, the model on BANs is in a different universality class to its DBANs counterpart in the whole range of the studied connectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA