Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Stem Cell Res Ther ; 18(7): 958-978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35794765

RESUMO

BACKGROUND: Cell sheet technique using mesenchymal stem cells is a high-level strategy in periodontal regenerative medicine. Although recent studies have shown the role of MSCSs in increased dental supporting tissues and bone, there is no systematic review focused specifically on assessing periodontal regeneration in orthotopic animal models. OBJECTIVE: To evaluate the potential of mesenchymal stem cell sheets (MSCSs) on periodontal regeneration, compared to control, in experimental animal models Methods: Pre-clinical studies in periodontal defects of animal models were considered eligible. The electronic search included the MEDLINE, Web of Science, EMBASE and LILACS databases. The review was conducted according to the Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement guidelines. RESULTS: A total of 17 of the 3989 studies obtained from the electronic database search were included. MSCSs included dental follicle (DF) MSCSs, periodontal ligament (PL) MSCSs, dental pulp (DP) MSCSs, bone marrow (BM) MSCSs, alveolar periosteal (AP) MSCSs and gingival (G) MSCSs. Regarding cell sheet inducing protocol, most of the studies used ascorbic acid (52.94%). Others used culture dishes grafted with a temperature-responsive polymer (47.06%). Adverse effects were not identified in the majority of studies. Meta-analysis was not considered because of methodological heterogeneities. PDL-MSCSs were superior for periodontal regeneration enhancement compared to the control, but in an induced inflammatory microenvironment, DF-MSCSs were better. Moreover, DF-MSCSs, DP-MSCSs, and BM-MSCSs showed improved results compared to the control. CONCLUSION: MSCSs can improve periodontal regeneration in animal periodontal defect models.


Assuntos
Células-Tronco Mesenquimais , Ligamento Periodontal , Animais , Gengiva , Medicina Regenerativa
2.
Braz Oral Res ; 36: e091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830138

RESUMO

The objective of this study was to formulate an experimental light-cured periodontal dressing containing alpha-humulene and to compare its physical, antimicrobial, and cytotoxicity properties with commercial gold standards (Barricaid® and Periobond®). Two periodontal dressing formulations were developed (a and b). The formulations were divided into 5 groups according to the alpha-humulene concentration as follows: Ea - control group, Ea1 - 1%, Ea5 - 5%, Ea10 - 10%, and Ea20 - 20%; Eb - control group, Eb1 - 1%, Eb5 - 5%, Eb10 - 10%, and Eb20 - 20%. Materials characterization was performed using the degree of conversion, cohesive strength, sorption, and solubility assays. Antimicrobial assay was performed using the modified direct contact test against E. faecalis and S. aureus. Cytotoxicity was assessed by the cell viability experiment using L929 fibroblasts. In general, the cohesive strength values of materials decreased as the alpha-humulene concentration increased. All the experimental dressings showed antimicrobial activity against both bacteria tested. Cell viability results for the Ea, Ea1, Eb, and Eb1 groups showed moderate cytotoxic effect. The formulations containing alpha-humulene showed similar behavior to the commercial references. Thus, formulations containing alpha-humulene have potential to be used as periodontal dressing.


Assuntos
Anti-Infecciosos , Curativos Periodontais , Anti-Infecciosos/farmacologia , Sesquiterpenos Monocíclicos , Staphylococcus aureus
3.
Braz Oral Res ; 36: e048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442377

RESUMO

PAR1 is a G-coupled protein receptor that regulates several cellular metabolism processes, including differentiation and proliferation of osteogenic and cementogenic related cells and our group previously demonstrated the regenerative potential of PAR1 in human periodontal ligament stem cells (hPDLSCs). In this study, we hypothesized that PAR1 regulates the cementogenic differentiation of hPDLSCs. Our goal was to identify the intracellular signaling pathway underlying PAR1 activation in hPDSLC differentiation. hPDLSCs were isolated using the explant technique. Cells were cultured in an osteogenic medium (OST) (α-MEM, 15% fetal bovine serum, L-glutamine, penicillin, streptomycin, amphotericin B, dexamethasone, and beta-glycerophosphate). The hPDLSCs were treated with a specific activator of PAR1 (PAR1 agonist) and blockers of the MAPK/ERK and PI3K pathways for 2 and 7 days. The gene expression of CEMP1 was assessed by RT-qPCR. The activation of PAR1 by its agonist peptide led to an increase in CEMP1 gene expression when compared with OST control. MAPK/ERK blockage abrogated the upregulation of CEMP1 gene expression induced by PAR1 agonist (p < 0.05). PI3K blockage did not affect the gene expression of CEMP1 at any experimental time (p > 0.05). We concluded that CEMP1 gene expression increased by PAR1 activation is MAPK/ERK-dependent and PI3K independent, suggesting that PAR1 may regulate cementogenetic differentiation of hPDLSCs.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptor PAR-1 , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Humanos , Osteogênese , Ligamento Periodontal , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
4.
Pesqui. bras. odontopediatria clín. integr ; 22: e210114, 2022. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1365227

RESUMO

ABSTRACT Objective To compare the cytotoxicity of commercial reparative endodontic cements on human periodontal ligament stem cells (hPDLSCs). Material and Methods The culture of hPDLSCs was established. Cell density was set at 2 × 104 cells/well in 96-well plates. Extracts of Biodentine, Bio-C Repair, Cimmo HD, MTA Repair HP and White MTA were prepared. Then, the extracts were diluted (pure, 1:4 and 1:16) and inserted into cell-seeded wells for 24, 48, and 72 h to assess cell viability through MTT assay. hPDLSCs incubated with culture medium alone served as a negative control group. Data were analyzed by Two-Way ANOVA and Tukey's test (α=0.05). Results At 24 h, pure extract of MTA Repair HP and Biodentine 1:16 presented higher cell viability compared to control. Lower cell viability was found for pure extract of Cimmo HD, MTA Repair HP 1:4 and 1:16, and White MTA 1:16. At 48 h, pure extract of Bio-C Repair and MTA Repair HP presented higher cell viability compared to control. At 72 h, only the pure extract of MTA Repair HP led to higher cell proliferation compared to control. Conclusion Biodentine, Bio-C Repair and MTA Repair HP were able to induce hPDLSCs proliferation. Cimmo HD and White MTA were found to be mostly cytotoxic in hPDLSCs.


Assuntos
Ligamento Periodontal/anatomia & histologia , Materiais Restauradores do Canal Radicular , Células-Tronco/imunologia , Testes Imunológicos de Citotoxicidade/instrumentação , Cimentos Dentários , Testes Imunológicos/instrumentação , Brasil , Contagem de Células , Análise de Variância , Endodontia , Cultura Primária de Células
5.
Braz. oral res. (Online) ; 36: e048, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1374752

RESUMO

Abstract: PAR1 is a G-coupled protein receptor that regulates several cellular metabolism processes, including differentiation and proliferation of osteogenic and cementogenic related cells and our group previously demonstrated the regenerative potential of PAR1 in human periodontal ligament stem cells (hPDLSCs). In this study, we hypothesized that PAR1 regulates the cementogenic differentiation of hPDLSCs. Our goal was to identify the intracellular signaling pathway underlying PAR1 activation in hPDSLC differentiation. hPDLSCs were isolated using the explant technique. Cells were cultured in an osteogenic medium (OST) (α-MEM, 15% fetal bovine serum, L-glutamine, penicillin, streptomycin, amphotericin B, dexamethasone, and beta-glycerophosphate). The hPDLSCs were treated with a specific activator of PAR1 (PAR1 agonist) and blockers of the MAPK/ERK and PI3K pathways for 2 and 7 days. The gene expression of CEMP1 was assessed by RT-qPCR. The activation of PAR1 by its agonist peptide led to an increase in CEMP1 gene expression when compared with OST control. MAPK/ERK blockage abrogated the upregulation of CEMP1 gene expression induced by PAR1 agonist (p < 0.05). PI3K blockage did not affect the gene expression of CEMP1 at any experimental time (p > 0.05). We concluded that CEMP1 gene expression increased by PAR1 activation is MAPK/ERK-dependent and PI3K independent, suggesting that PAR1 may regulate cementogenetic differentiation of hPDLSCs.

6.
Braz. oral res. (Online) ; 36: e091, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1384209

RESUMO

Abstract The objective of this study was to formulate an experimental light-cured periodontal dressing containing alpha-humulene and to compare its physical, antimicrobial, and cytotoxicity properties with commercial gold standards (Barricaid® and Periobond®). Two periodontal dressing formulations were developed (a and b). The formulations were divided into 5 groups according to the alpha-humulene concentration as follows: Ea - control group, Ea1 - 1%, Ea5 - 5%, Ea10 - 10%, and Ea20 - 20%; Eb - control group, Eb1 - 1%, Eb5 - 5%, Eb10 - 10%, and Eb20 - 20%. Materials characterization was performed using the degree of conversion, cohesive strength, sorption, and solubility assays. Antimicrobial assay was performed using the modified direct contact test against E. faecalis and S. aureus. Cytotoxicity was assessed by the cell viability experiment using L929 fibroblasts. In general, the cohesive strength values of materials decreased as the alpha-humulene concentration increased. All the experimental dressings showed antimicrobial activity against both bacteria tested. Cell viability results for the Ea, Ea1, Eb, and Eb1 groups showed moderate cytotoxic effect. The formulations containing alpha-humulene showed similar behavior to the commercial references. Thus, formulations containing alpha-humulene have potential to be used as periodontal dressing.

7.
Sci Rep ; 11(1): 21531, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728647

RESUMO

Chitosan films containing distilled pyroligneous extracts of Eucalyptus grandis (DPEC), characterized and developed by Brazilian Agricultural Research Corporation-Embrapa Temperate Agriculture (EMBRAPA-CPACT), were evaluated for antimicrobial activity against Candida albicans, Streptococcus mutans, and Lactobacillus acidophilus by direct contact test. Further, their capacity for the prevention of teeth enamel demineralization and cytotoxicity in vitro were also determined. The natural polymers were tested at different concentrations (1500-7500 µg mL-1) and the formulation of an experimental fluoride varnish with antimicrobial activity was evaluated by direct contact test, whereas cytotoxicity was analyzed through the colorimetric MTT assay. Preliminary data showed no statistically significant differences in cytotoxicity to NIH/3T3 cell line when DPEC is compared to the control group. On the other hand, the antimicrobial capacity and demineralization effects were found between the test groups at the different concentrations tested. Chitosan films containing distilled pyroligneous extracts of E. grandis may be an effective control strategy to prevent biofilm formation related to dental caries when applied as a protective varnish. They may inhibit the colonization of oral microorganisms and possibly control dental caries through a decrease in pH and impairment of enamel demineralization.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/química , Eucalyptus/química , Extratos Vegetais/farmacologia , Terpenos/química , Desmineralização do Dente/prevenção & controle , Administração Oral , Adulto , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cariostáticos/administração & dosagem , Cariostáticos/farmacologia , Proliferação de Células , Feminino , Humanos , Camundongos , Células NIH 3T3 , Extratos Vegetais/administração & dosagem , Polímeros/química , Adulto Jovem
8.
Braz Dent J ; 32(3): 65-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34755791

RESUMO

This study investigated the effect of three commercial calcium silicate-based materials (CSBM) on cytotoxicity and pro-and anti-inflammatory cytokines production in cultured human periodontal ligament stem cells (hPDLSCs). Culture of hPDLSCs was established and characterized. Extracts of Bio-C Sealer (Angelus, Londrina, PR, Brazil), MTA Fillapex (Angelus, Londrina, PR, Brazil) and PBS Cimmo HP (Cimmo Soluções em Saúde, Pouso Alegre, MG, Brazil) were prepared by placing cement specimens (5 x 3 mm) in culture medium. Then, the extracts were serially two-fold diluted (1, 1:2, 1:4, 1:8, 1:16) and inserted into the cell-seeded wells for 24, 48 and 72 h for MTT assays. TNF-α and IL-10 cytokines were quantified by ELISA at 24h-cell supernatants. Data were analyzed by ANOVA and Tukey's test (α = 0.05). All CSBM exhibited some cytotoxicity that varied according to extract concentration and time of evaluation. MTA Fillapex presented the highest cytotoxic effects with significant reduction of metabolic activity/cell viability when compared to Bio-C Sealer and Cimmo HP®. TNF-α was significantly upregulated by the three tested cements (p < 0.05) while only MTA Fillapex significantly upregulated IL-10 in comparison to control. Taken collectively, the results showed that PBS Cimmo HP®, Bio-C Sealer and MTA Fillapex present mild and transient cytotoxicity and slightly induced TNF-α production. MTA Fillapex upregulated IL-10 release by hPDLSCs.


Assuntos
Compostos de Cálcio/efeitos adversos , Ligamento Periodontal , Materiais Restauradores do Canal Radicular/efeitos adversos , Silicatos/efeitos adversos , Células-Tronco/efeitos dos fármacos , Compostos de Alumínio , Citocinas/metabolismo , Humanos , Teste de Materiais , Óxidos , Ligamento Periodontal/citologia
9.
Braz. dent. j ; 32(3): 65-74, May-June 2021. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1345502

RESUMO

Abstract This study investigated the effect of three commercial calcium silicate-based materials (CSBM) on cytotoxicity and pro-and anti-inflammatory cytokines production in cultured human periodontal ligament stem cells (hPDLSCs). Culture of hPDLSCs was established and characterized. Extracts of Bio-C Sealer (Angelus, Londrina, PR, Brazil), MTA Fillapex (Angelus, Londrina, PR, Brazil) and PBS Cimmo HP (Cimmo Soluções em Saúde, Pouso Alegre, MG, Brazil) were prepared by placing cement specimens (5 x 3 mm) in culture medium. Then, the extracts were serially two-fold diluted (1, 1:2, 1:4, 1:8, 1:16) and inserted into the cell-seeded wells for 24, 48 and 72 h for MTT assays. TNF-α and IL-10 cytokines were quantified by ELISA at 24h-cell supernatants. Data were analyzed by ANOVA and Tukey's test (α = 0.05). All CSBM exhibited some cytotoxicity that varied according to extract concentration and time of evaluation. MTA Fillapex presented the highest cytotoxic effects with significant reduction of metabolic activity/cell viability when compared to Bio-C Sealer and Cimmo HP®. TNF-α was significantly upregulated by the three tested cements (p < 0.05) while only MTA Fillapex significantly upregulated IL-10 in comparison to control. Taken collectively, the results showed that PBS Cimmo HP®, Bio-C Sealer and MTA Fillapex present mild and transient cytotoxicity and slightly induced TNF-α production. MTA Fillapex upregulated IL-10 release by hPDLSCs.


Resumo Este estudo investigou o efeito de três materiais comerciais à base de silicato de cálcio (CSBM) na citotoxicidade e na produção de citocinas pró e antiinflamatórias em células-tronco do ligamento periodontal humano (hPDLSCs). Cultura de hPDLSCs foi estabelecida e caracterizada. Extratos de Bio-C Sealer (Angelus, Londrina, PR, Brasil), MTA Fillapex (Angelus, Londrina, PR, Brasil) e PBS Cimmo HP® (Cimmo Soluções em Saúde, Pouso Alegre, MG, Brasil) foram preparados com a colocação de espécimes dos cimentos (5 x 3 mm) em meio de cultura. Em seguida, os extratos foram diluídos (1, 1: 2, 1: 4, 1: 8, 1:16) e inseridos nos poços semeados de células para ensaio de citotoxicidade por meio de MTT por 24, 48 e 72 h. As citocinas TNF-α e IL-10 foram quantificadas por ELISA em sobrenadantes de células de 24 h. Os dados foram analisados por ANOVA e teste de Tukey (α = 0,05). Todos os CSBM exibiram alguma citotoxicidade que variou de acordo com a concentração do extrato e o tempo de avaliação. O MTA Fillapex apresentou os maiores efeitos citotóxicos com redução significativa da atividade metabólica / viabilidade celular quando comparado ao Bio-C Sealer e Cimmo HP®. O TNF-α foi regulado positivamente pelos três cimentos testados (p <0,05), enquanto apenas o MTA Fillapex regulou positivamente a liberação de IL-10 em comparação com o controle. Tomados em conjunto, os resultados mostraram que PBS Cimmo HP®, Bio-C Sealer e MTA Fillapex apresentam citotoxicidade leve e transitória e induziram a produção de TNF-α. O MTA Fillapex regulou positivamente a liberação de IL-10 por hPDLSCs.


Assuntos
Humanos , Ligamento Periodontal/citologia , Materiais Restauradores do Canal Radicular/efeitos adversos , Células-Tronco/efeitos dos fármacos , Silicatos/efeitos adversos , Compostos de Cálcio/efeitos adversos , Óxidos , Teste de Materiais , Citocinas/metabolismo , Compostos de Alumínio
10.
Exp Biol Med (Maywood) ; 246(6): 688-694, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33302737

RESUMO

Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.


Assuntos
Coagulação Sanguínea/fisiologia , COVID-19/patologia , Coagulação Intravascular Disseminada/patologia , Receptor PAR-1/metabolismo , Trombina/metabolismo , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Fatores de Coagulação Sanguínea/metabolismo , Coagulação Intravascular Disseminada/tratamento farmacológico , Humanos , Embolia Pulmonar/patologia , Embolia Pulmonar/prevenção & controle , Receptor PAR-1/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , SARS-CoV-2 , Trombose Venosa/patologia , Trombose Venosa/prevenção & controle , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA