Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034395

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS: Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION: We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.


Assuntos
Cerebelo , Corpo Caloso , Doenças Desmielinizantes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Corpo Caloso/patologia , Cerebelo/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , Lisofosfatidilcolinas , Citocinas/metabolismo , Bainha de Mielina/patologia
2.
Pharmaceutics ; 15(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37242615

RESUMO

Tacrolimus (Tac) is a calcineurin inhibitor commonly used as an immunosuppressor after solid organ transplantation. However, Tac may induce hypertension, nephrotoxicity, and an increase in aldosterone levels. The activation of the mineralocorticoid receptor (MR) is related to the proinflammatory status at the renal level. It modulates the vasoactive response as they are expressed on vascular smooth muscle cells (SMC). In this study, we investigated whether MR is involved in the renal damage generated by Tac and if the MR expressed in SMC is involved. Littermate control mice and mice with targeted deletion of the MR in SMC (SMC-MR-KO) were administered Tac (10 mg/Kg/d) for 10 days. Tac increased the blood pressure, plasma creatinine, expression of the renal induction of the interleukin (IL)-6 mRNA, and expression of neutrophil gelatinase-associated lipocalin (NGAL) protein, a marker of tubular damage (p < 0.05). Our study revealed that co-administration of spironolactone, an MR antagonist, or the absence of MR in SMC-MR-KO mice mitigated most of the unwanted effects of Tac. These results enhance our understanding of the involvement of MR in SMC during the adverse reactions of Tac treatment. Our findings provided an opportunity to design future studies considering the MR antagonism in transplanted subjects.

3.
Front Endocrinol (Lausanne) ; 13: 1006790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387895

RESUMO

In recent studies, primary aldosteronism (PA) has been reported as the most common etiology for secondary hypertension of endocrine origin, accounting for approximately 10% of cases. In PA, excess aldosterone production can lead to deleterious effects at the cardiovascular (CV) and renal levels by activating mineralocorticoid receptors, which involves an increase in pro-inflammatory and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase-associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin superfamily, has been closely linked to CV and renal damage in several pathological conditions. Because NGAL can be detected in biofluids such as plasma and urine, it has been proposed as a damage biomarker for target tissues and has also been studied for its role in hypertension and associated with PA. NGAL is produced by many different cell types, can be carried on extracellular vesicles, and is modulated by microRNAs, which would support its use as a biomarker for endocrine hypertension due to PA. Over the last decade, studies have shown that NGAL is necessary for the development of aldosterone-induced hypertension and that is associated with end-organ damage. In addition, it has been proposed that some mechanisms are dependent on the activation of immune cells, such as dendritic cells and macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23) or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL. Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and Th2, resulting in CV and renal fibrosis due to the high aldosterone levels. Although the immune system has been closely associated with essential hypertension, its participation in endocrine hypertension has not been fully elucidated. This review discusses the link between NGAL and endocrine hypertension, particularly in the context of PA, and their possible regulators and mechanisms, with a focus on its role as an immunomodulator.


Assuntos
Doenças das Glândulas Suprarrenais , Hipertensão , Humanos , Lipocalina-2/metabolismo , Aldosterona , Hipertensão/etiologia , Fatores Imunológicos , Fibrose , Biomarcadores
4.
Front Cardiovasc Med ; 8: 644797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179130

RESUMO

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.

5.
Antioxidants (Basel) ; 10(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800425

RESUMO

Renal diseases are a global health concern, and nearly 24% of kidney disease patients are overweight or obese. Particularly, increased body mass index has been correlated with oxidative stress and urinary albumin excretion in kidney disease patients, also contributing to increased cardiovascular risk. Albumin is the main plasma protein and is able to partially cross the glomerular filtration barrier, being reabsorbed mainly by the proximal tubule through different mechanisms. However, it has been demonstrated that albumin suffers different posttranslational modifications, including oxidation, which appears to be tightly linked to kidney damage progression and is increased in obese patients. Plasma-oxidized albumin levels correlate with a decrease in estimated glomerular filtration rate and an increase in blood urea nitrogen in patients with chronic kidney disease. Moreover, oxidized albumin in kidney disease patients is independently correlated with higher plasma levels of transforming growth factor beta (TGF-ß1), tumor necrosis factor (TNF-α), and interleukin (IL)-1ß and IL-6. In addition, oxidized albumin exerts a direct effect on neutrophils by augmenting the levels of neutrophil gelatinase-associated lipocalin, a well-accepted biomarker for renal damage in patients and in different experimental settings. Moreover, it has been suggested that albumin oxidation occurs at early stages of chronic kidney disease, accelerating the patient requirements for dialytic treatment during disease progression. In this review, we summarize the evidence supporting the role of overweight- and obesity-induced oxidative stress as a critical factor for the progression of renal disease and cardiovascular morbimortality through albumin oxidation.

6.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198361

RESUMO

It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.


Assuntos
Hipertensão/metabolismo , Neutrófilos/fisiologia , Imunidade Adaptativa , Animais , Pressão Sanguínea , Doenças Cardiovasculares/complicações , Quimiocinas/metabolismo , Fibrose/patologia , Humanos , Imunidade Inata , Inflamação , Nefropatias/complicações , Camundongos , Neutrófilos/citologia , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
7.
Front Pharmacol ; 10: 1314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803050

RESUMO

Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin-angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8-12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1ß (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-ß1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28607023

RESUMO

The vancomycin loading dose (LD) of 25 to 30 mg/kg is a frequently practiced strategy to achieve effective concentrations from the first-treatment dose. However, considering only the body weight for dosing might be inadequate in critically ill patients due to pharmacokinetics changes. We sought to assess achieving optimal trough serum levels of vancomycin and AUC0-24/MIC in the first 24 h of treatment by using an LD based on population pharmacokinetic parameters of critically ill patients. We performed a concurrent cohort study over 22 months of patients with severe sepsis who received intravenous vancomycin. The patients were treated with three different strategies to initiate vancomycin: without an LD (group A), with an LD of 25 to 30 mg/kg (group B), and with an LD based on population pharmacokinetic parameters of the critically ill patient (group C). An optimal trough serum concentration was achieved in 5, 9, and 83% of patients in groups A, B, and C, respectively. The number of patients that reached optimal AUC0-24 was 2 of 18 (11%), 5 of 11 (46%), and 11 of 12 (92%) in groups A, B, and C, respectively. The statistical analysis for both parameters revealed significant differences in group C with respect to other groups. The administration of the LD calculated from population pharmacokinetic parameters from the beginning of therapy is a more efficient strategy to obtain adequate trough serum concentrations and AUC0-24/MIC in critical patients.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Sepse/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacocinética , Vancomicina/uso terapêutico , Estudos de Coortes , Cuidados Críticos/métodos , Estado Terminal , Humanos , Sepse/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/sangue
9.
Hypertension ; 63(4): 797-803, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24420551

RESUMO

Adaptive immune response has been implicated in inflammation and fibrosis as a result of exposure to mineralocorticoids and a high-salt diet. We hypothesized that in mineralocorticoid-salt-induced hypertension, activation of the mineralocorticoid receptor alters the T-helper 17 lymphocyte (Th17)/regulatory T-lymphocyte/interleukin-17 (IL-17) pathway, contributing to cardiac and renal damage. We studied the inflammatory response and tissue damage in rats treated with deoxycorticosterone acetate and high-salt diet (DOCA-salt), with or without mineralocorticoid receptor inhibition by spironolactone. To determine whether Th17 differentiation in DOCA-salt rats is caused by hypertension per se, DOCA-salt rats received antihypertensive therapy. In addition, to evaluate the pathogenic role of IL-17 in hypertension and tissue damage, we studied the effect of IL-17 blockade with a specific antibody (anti-IL-17). We found activation of Th17 cells and downregulation of forkhead box P3 mRNA in peripheral tissues, heart, and kidneys of DOCA-salt-treated rats. Spironolactone treatment prevented Th17 cell activation and increased numbers of forkhead box P3-positive cells relative to DOCA-salt rats. Antihypertensive therapy did not ameliorate Th17 activation in rats. Treatment of DOCA-salt rats with anti-IL-17 significantly reduced arterial hypertension as well as expression of profibrotic and proinflammatory mediators and collagen deposits in the heart and kidney. We conclude that mineralocorticoid receptor activation alters the Th17/regulatory T-lymphocyte/IL-17 pathway in mineralocorticoid-dependent hypertension as part of an inflammatory mechanism contributing to fibrosis.


Assuntos
Acetato de Desoxicorticosterona/efeitos adversos , Cardiopatias/prevenção & controle , Hipertensão/induzido quimicamente , Nefropatias/prevenção & controle , Espironolactona/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Acetato de Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Fatores de Transcrição Forkhead/efeitos dos fármacos , Fatores de Transcrição Forkhead/fisiologia , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Hipertensão/complicações , Hipertensão/fisiopatologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/imunologia , Interleucina-17/fisiologia , Nefropatias/etiologia , Nefropatias/fisiopatologia , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/patologia , Células Th17/patologia
10.
J Hypertens ; 29(9): 1684-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21826023

RESUMO

High plasmatic levels of aldosterone cause hypertension and contribute to progressive organ damage to the heart, vasculature, and kidneys. Recent studies have demonstrated a role for the immune system in these pathological processes. Aldosterone promotes an inflammatory state characterized by vascular infiltration of immune cells, reactive oxidative stress, and proinflammatory cytokine production. Further, cells of the adaptive immune system, such as T cells, seem to participate in the genesis of mineralocorticoid hormone-induced hypertension. In addition, the observation that aldosterone can promote CD4⁺ T-cell activation and Th17 polarization suggests that this hormone could contribute to the onset of autoimmunity. Here we discuss recent evidence supporting a significant involvement of the immune system, especially adaptive immunity, in the genesis of hypertension and organ damage induced by primary aldosteronism. In addition, possible new therapeutic approaches consisting of immunomodulator drugs to control exacerbated immune responses triggered by elevated aldosterone concentrations will be described.


Assuntos
Aldosterona/fisiologia , Imunidade/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA