Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794323

RESUMO

Sunscreen products are essential for shielding the skin from ultraviolet (UV) radiation, a leading cause of skin cancer. While existing products serve this purpose, there is a growing need to enhance their efficacy while minimizing potential systemic absorption of UV filters and associated toxicological risks. Liposomal-based formulations have emerged as a promising approach to address these challenges and develop advanced photoprotective products. These vesicular systems offer versatility in carrying both hydrophilic and lipophilic UV filters, enabling the creation of broad-spectrum sunscreens. Moreover, their composition based on phospholipids, resembling that of the stratum corneum, facilitates adherence to the skin's surface layers, thereby improving photoprotective efficacy. The research discussed in this review underscores the significant advantages of liposomes in photoprotection, including their ability to limit the systemic absorption of UV filters, enhance formulation stability, and augment photoprotective effects. However, despite these benefits, there remains a notable gap between the potential of liposomal systems and their utilization in sunscreen development. Consequently, this review emphasizes the importance of leveraging liposomes and related vesicular systems as innovative tools for crafting novel and more efficient photoprotective formulations.

2.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678788

RESUMO

Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 µg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.

3.
Int J Nanomedicine ; 16: 7353-7367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754189

RESUMO

BACKGROUND: Although bullfrog oil (BFO) exerts anti-inflammatory effects, it has undesirable properties limiting its use. METHODOLOGY: BFO nanocapsules (BFONc) were produced through nanoprecipitation, and their physicochemical and morphological properties were characterized. To evaluate the biocompatibility of the formulation, a mitochondrial activity evaluation assay was conducted, and cell uptake was assessed. The in vitro anti-inflammatory activity was evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO), type-6 interleukin (IL-6), and tumor necrosis factor (TNF) levels. The in vivo anti-inflammatory effect was assessed by quantifying myeloperoxidase (MPO) levels using the carrageenan-induced paw edema model. RESULTS: BFONc showed a particle size of 233 ± 22 nm, a polydispersity index of 0.17 ± 0.03, and a zeta potential of -34 ± 2.6mV. BFONc revealed remarkable biocompatibility and did not induce changes in cell morphology. Furthermore, BFONc decreased ROS levels by 81 ± 4%; however, NO level increased by 72 ± 18%. TNF and IL-6 levels were reduced by approximately 10% and 90%, respectively. Significant in vivo anti-inflammatory activity was observed compared to dexamethasone. MPO levels were reduced up to 2 MPOs/mg. CONCLUSION: Taken together, the results pointed out the remarkable biocompatibility and anti-inflammatory effects of BFONc.


Assuntos
Nanocápsulas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina , Edema/tratamento farmacológico , Nanocápsulas/uso terapêutico , Extratos Vegetais/uso terapêutico , Rana catesbeiana , Fator de Necrose Tumoral alfa/uso terapêutico
4.
An Acad Bras Cienc ; 93(suppl 4): e20210964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34817041

RESUMO

Influenza A virus, the main flu agent, affects billions of people worldwide. Conventional treatments still present limitations related to drug-resistance and severe side effects. As a result, natural product-derived molecules have been increasingly investigated as prospect drug candidates. Therefore, the aim of this study was to investigate the possible anti-flu activity and to evaluate the toxicity and pharmacokinetic parameters, by in silico approaches, of the Schinopsis brasiliensis Engl. phytochemical compounds. Nine phytocompounds and six antiviral drugs (Amantadine, Umifenovir, Favipiravir, Nitazoxanide, Oseltamivir, Zanamivir) were selected for the analyses against four Influenza A proteins: neuraminidase, polymerase basic protein 2, hemagglutinin and M2 ion channel protein. The molecular docking, the predicted antiviral activity, the predicted toxicity and the pharmacokinetics investigations were conducted. The obtained results demonstrated that Syringaresinol and Cycloartenone display promising in silico antiviral activity (binding energy < 5.0 and ≥ 9.0 kcal/mol) and safety (low toxicity than commercial anti-flu drugs). Overall, this study corroborated the hypothesis that S. brasiliensis barks extract has a biological activity against Influenza A virus. Additionally, Syringaresinol and Cycloartenone have multiple targets in Influenza A virus and showed themselves as the most promising phytocompounds to be isolated and considered for the therapeutic arsenal against the flu.


Assuntos
Antivirais , Vírus da Influenza A , Antivirais/farmacologia , Farmacorresistência Viral , Humanos , Simulação de Acoplamento Molecular , Oseltamivir , Zanamivir
5.
Expert Opin Drug Deliv ; 18(11): 1577-1587, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34253133

RESUMO

INTRODUCTION: Cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, has several therapeutic properties. However, its high lipophilicity, metabolization, and instability impair its bioavailability and translational use in clinical settings. Several advanced drug delivery systems (ADDSs) have been evaluated as CBD carriers to overcome these drawbacks. These systems can improve the CBD dissolution profile, protect it against metabolization, and produce a site-specific release, increasing its bioavailability and making CBD administration clinically effective. AREAS COVERED: This review summarizes scientific reports on cannabidiol advanced delivery systems (CBD-ADSs) that have been (i) developed, and (ii) applied therapeutically; reports published in the main scientific databases until January 2020 were included. Studies without experimental data and/or published in languages other than English were excluded. Moreover, pharmaceutical technology tools in CBD therapeutic use have been discussed, emphasizing the clinical translation of CBD carrier use. EXPERT OPINION: Studies reporting CBD-ADS use for medicinal applications were reviewed and revealed multifaceted systems that can overcome the physicochemical drawbacks of CBD and improve its biological activities. Therefore, researchers concluded that the developed CBD-ADS can be used as an alternative to traditional formulations because they show comparable or superior effectiveness in treatment protocols. Although several criteria remain to be met, our findings emphasize the potential of CBD-ADSs for translational therapeutics, particularly for neurological-disorders.


Assuntos
Canabidiol , Cannabis , Doenças do Sistema Nervoso , Disponibilidade Biológica
6.
Pharmaceutics ; 13(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073997

RESUMO

Onychomycosis induced by Candida spp. has several limitations regarding its treatment. Nail lacquers display the potential to overcome these drawbacks by providing therapeutic compliance and increasing local drug bioavailability. Thus, this work aimed to produce a nail lacquer loaded with Amphotericin B (AmB) and evaluate its performance. The AmB-loaded nail lacquer was produced and preliminarily characterized. An AmB quantification method was developed. Stability, drug release, permeability and anti-Candida activity assays were conducted. The analytical method validation met the acceptance criteria. The drug loading efficiency was 100% (0.02 mg/g of total product), whereas the AmB stability was limited to ≅7 days (≅90% remaining). The nail lacquer displayed a drying time of 187 s, non-volatile content of around 20%w/w, water-resistance of approximately 2%w/w of weight loss and satisfactory in vitro adhesion. Moreover, the in vitro antifungal activity against different Candida spp. strains was confirmed. The AmB release and the ex vivo permeability studies revealed that AmB leaves the lacquer and permeates the nail matrix in 47.76 ± 0.07% over 24 h. In conclusion, AmB-loaded nail lacquer shows itself as a promising extemporaneous dosage form with remarkable anti-Candida activity related to onychomycosis.

7.
Pharmaceutics ; 13(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068129

RESUMO

Liposomes have become successful nanostructured systems used in clinical practices. These vesicles are able to carry important drug loadings with noteworthy stability. The aim of this work was to develop iron oxide-loaded stealth liposomes as a prospective alternative for the treatment of lung cancer. In this study, citric acid iron oxide nanoparticles (IONPs-Ac) were synthesized and encapsulated in stealth liposomes. Their cytotoxicity and selectivity against lung tumor cells were assessed. Stealth liposomal vesicles, with relevant content of IONPs-Ac, named ferri-liposomes (SL-IONPs-Ac), were produced with an average size of 200 nm. They displayed important cytotoxicity in a human lung cancer cells model (A549 cells), even at low concentrations, whereas free IONPs-Ac displayed adequate biocompatibility. Nevertheless, the treatment at the same concentration of ferri-liposomes against HEK-293 cells, a normal human cell lineage, was not significantly cytotoxic, revealing a probable lung tumor selectiveness of the fabricated formulation. Furthermore, from the flow cytometry studies, it was possible to infer that ferri-liposomes were able to induce A549 tumor cells death through apoptosis/ferroptosis processes, evidenced by a significant reduction of the mitochondrial membrane potential.

8.
Biomed Pharmacother ; 139: 111578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33848774

RESUMO

The COVID-19 has become of striking interest since the number of deaths is constantly rising all over the globe, and the search for an efficient treatment is more urgent. In light of this worrisome scenario, this opinion review aimed to discuss the current knowledge about the potential role of curcumin and its nanostructured systems on the SARS-CoV-2 targets. From this perspective, this work demonstrated that curcumin urges as a potential antiviral key for the treatment of SARS-CoV-2 based on its relation to the infection pathways. Moreover, the use of curcumin-loaded nanocarriers for increasing its bioavailability and therapeutic efficiency was highlighted. Additionally, the potential of the nanostructured systems by themselves and their synergic action with curcumin on molecular targets for viral infections have been explored. Finally, a viewpoint of the studies that need to be carried out to implant curcumin as a treatment for COVID-19 was addressed.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanomedicina , Animais , Ensaios Clínicos como Assunto , Humanos
9.
J Appl Oral Sci ; 29: e20200678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787730

RESUMO

OBJECTIVE: SARS-CoV-2 has high human-human transmission rate. The aerosols and saliva droplets are the main contamination source. Thus, it is crucial to point out that dental practitioners become a high-risk group of contagion by SARS-CoV-2. Based on this, protocols have been recommended to avoid cross-contamination during dental care; however, appropriate evidence has not yet been established. Our study sought to make a screening, by in silico analysis, of the potential of mouth rinses used in dental practices to prevent the dental workers' contamination by SARS-CoV-2. METHODOLOGY: Multiple sequence comparisons and construction of the phylogenetic tree were conducted using the FASTA code. Therefore, molecular docking investigation between SARS-CoV-2 proteins (Main Protease, Spike Glycoprotein, Non-structure Protein, and Papain-like Protease) and molecules used in dental practices (chlorhexidine digluconate, hydrogen peroxide, cetylpyridinium chloride, povidone-iodine, gallic acid, ß-cyclodextrin, catechin, and quercetin) was performed using AutoDock Vina. Moreover, 2D interactions of the complex protein-ligand structure were analyzed by Ligplot+. RESULTS: The obtained results showed a remarkable affinity between SARS-CoV-2 proteins and all tested compounds. The chlorhexidine digluconate, catechin, and quercetin presented a higher affinity with SARS-CoV-2. CONCLUSIONS: The overall results allowed us to suggest that chlorhexidine is the most suitable active compound in reducing the SARS-CoV-2 salivary load due to its better binding energy. However, in vivo studies should be conducted to confirm their clinical use.


Assuntos
COVID-19 , Odontólogos , Humanos , Simulação de Acoplamento Molecular , Filogenia , Papel Profissional , SARS-CoV-2
10.
Biomed Pharmacother ; 134: 111143, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360048

RESUMO

BACKGROUND: The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS: The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS: The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Tratamento Farmacológico da COVID-19 , Mediadores da Inflamação/antagonistas & inibidores , Síndrome do Desconforto Respiratório/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , COVID-19/diagnóstico , COVID-19/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA