Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 889806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072886

RESUMO

Spatial cognition is related to academic achievement in science, technology, engineering, and mathematics (STEM) domains. Neuroimaging studies suggest that brain regions' activation might be related to the general cognitive effort while solving mental rotation tasks (MRT). In this study, we evaluate the mental effort of children performing MRT tasks by measuring brain activation and pupil dilation. We use functional near-infrared spectroscopy (fNIRS) concurrently to collect brain hemodynamic responses from children's prefrontal cortex (PFC) and an Eye-tracking system to measure pupil dilation during MRT. Thirty-two healthy students aged 9-11 participated in this experiment. Behavioral measurements such as task performance on geometry problem-solving tests and MRT scores were also collected. The results were significant positive correlations between the children's MRT and geometry problem-solving test scores. There are also significant positive correlations between dorsolateral PFC (dlPFC) hemodynamic signals and visuospatial task performances (MRT and geometry problem-solving scores). Moreover, we found significant activation in the amplitude of deoxy-Hb variation on the dlPFC and that pupil diameter increased during the MRT, suggesting that both physiological responses are related to mental effort processes during the visuospatial task. Our findings indicate that children with more mental effort under the task performed better. The multimodal approach to monitoring students' mental effort can be of great interest in providing objective feedback on cognitive resource conditions and advancing our comprehension of the neural mechanisms that underlie cognitive effort. Hence, the ability to detect two distinct mental states of rest or activation of children during the MRT could eventually lead to an application for investigating the visuospatial skills of young students using naturalistic educational paradigms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31877700

RESUMO

The prevalence of health problems during childhood and adolescence is high in developing countries such as Brazil. Social inequality, violence, and malnutrition have strong impact on youth health. To better understand these issues we propose to combine machine-learning methods and graph analysis to build predictive networks applied to the Brazilian National Student Health Survey (PenSE 2015) data, a large dataset that consists of questionnaires filled by the students. By using a combination of gradient boosting machines and centrality hub metric, it was possible to identify potential confounders to be considered when conducting association analyses among variables. The variables were ranked according to their hub centrality to predict the other variables from a directed weighted-graph perspective. The top five ranked confounder variables were "gender", "oral health care", "intended education level", and two variables associated with nutrition habits-"eat while watching TV" and "never eat fast-food". In conclusion, although causal effects cannot be inferred from the data, we believe that the proposed approach might be a useful tool to obtain novel insights on the association between variables and to identify general factors related to health conditions.


Assuntos
Saúde do Adolescente/estatística & dados numéricos , Aprendizado de Máquina , Avaliação Nutricional , Fatores Socioeconômicos , Adolescente , Brasil , Feminino , Humanos , Masculino , Classe Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA