Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17068, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273559

RESUMO

Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganic P δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soil δ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.


Assuntos
Fósforo , Solo , Isótopos de Oxigênio , Água , Chile , Clima Desértico
2.
Front Microbiol ; 12: 794743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35197940

RESUMO

The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.

3.
PLoS One ; 10(4): e0123790, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909987

RESUMO

The impact of termites on nutrient cycling and tropical soil formation depends on their feeding habits and related material transformation. The identification of food sources, however, is difficult, because they are variable and changed by termite activity and nest construction. Here, we related the sources and alteration of organic matter in nests from seven different termite genera and feeding habits in the Terra Firme rainforests to the properties of potential food sources soil, wood, and microepiphytes. Chemical analyses comprised isotopic composition of C and N, cellulosic (CPS), non-cellulosic (NCPS), and N-containing saccharides, and molecular composition screening using pyrolysis-field ionization mass spectrometry (Py-FIMS). The isotopic analysis revealed higher soil δ13C (-27.4‰) and δ15N (6.6‰) values in nests of wood feeding Nasutitermes and Cornitermes than in wood samples (δ13C = -29.1‰, δ15N = 3.4‰), reflecting stable-isotope enrichment with organic matter alterations during or after nest construction. This result was confirmed by elevated NCPS:CPS ratios, indicating a preferential cellulose decomposition in the nests. High portions of muramic acid (MurAc) pointed to the participation of bacteria in the transformation processes. Non-metric multidimensional scaling (MDS) revealed increasing geophagy in the sequence Termes < Embiratermes < Anoplotermes and increasing xylophagy for Cornitermes < Nasutitermes., and that the nest material of Constrictotermes was similar to the microepiphytes sample, confirming the report that Constrictotermes belongs to the microepiphyte-feeders. We therewith document that nest chemistry of rainforest termites shows variations and evidence of modification by microbial processes, but nevertheless it primarily reflects the trophic niches of the constructors.


Assuntos
Isópteros/fisiologia , Floresta Úmida , Solo/química , Amino Açúcares/análise , Animais , Brasil , Isópteros/classificação , Espectrometria de Massas , Polissacarídeos/análise
4.
Environ Sci Technol ; 48(9): 4963-70, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24702276

RESUMO

Long-term irrigation with untreated wastewater may increase soil microbial adaptation to pollution load and lead to enhanced natural attenuation. We hypothesized that long-term wastewater irrigation accelerates the dissipation of pharmaceuticals. To test our hypothesis we performed an incubation experiment with soils from the Mezquital Valley, Mexico that were irrigated for 0, 14, or 100 years. The results showed that the dissipation half-lives (DT50) of diclofenac (<0.1-1.4 days), bezafibrate (<0.1-4.8 days), sulfamethoxazole (2-33 days), naproxen (6-19 days), carbamazepine (355-1,624 days), and ciprofloxacin were not affected by wastewater irrigation. Trimethoprim dissipation was even slower in soils irrigated for 100 years (DT50: 45-72 days) than in nonirrigated soils (DT50: 12-16 days), was negatively correlated with soil organic matter content and soil-water distribution coefficients, and was inhibited in sterilized soils. Applying a kinetic fate model indicated that long-term irrigation enhanced sequestration of cationic or uncharged trimethoprim and uncharged carbamazepine, but did not affect sequestration of fast-dissipating zwitterions or negatively charged pharmaceuticals. We conclude that microbial adaptation processes play a minor role for pharmaceutical dissipation in wastewater-irrigated soils, while organic matter accumulation in these soils can retard trimethoprim and carbamazepine dissipation.


Assuntos
Irrigação Agrícola , Preparações Farmacêuticas/química , Poluentes do Solo/química , Solo/química , Águas Residuárias , Cromatografia Líquida , Meia-Vida , México , Microbiologia do Solo , Espectrometria de Massas em Tandem
5.
J Environ Qual ; 43(6): 1926-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602209

RESUMO

Wastewater irrigation is often performed by flood irrigation, leading to changes in redox potential (Eh) of irrigated soils. In addition to soil organic matter, Fe-(hydr)oxides are important sorbents for pollutants, and biotransformation of pollutants can be accelerated under reducing conditions. Here, the influence of reducing conditions on the release of sorbed pharmaceuticals from soil and their potential accelerated dissipation was investigated in a microcosm study. Samples of a soil from the Mezquital Valley (Mexico) irrigated for 85 yr with untreated wastewater were incubated under oxidizing (Eh of 500 ± 20 mV), weakly reducing (Eh of 100 ± 20 mV), and moderately reducing (Eh of -100 ± 20 mV) soil conditions for 30 to 31 d. The concentrations of nine pharmaceuticals (bezafibrate, carbamazepine, ciprofloxacin, sulfamethoxazole, trimethoprim, enrofloxacin, clarithromycin, diclofenac, and naproxen) were extracted via solid-phase extraction from soil slurries and analyzed by liquid chromatography-tandem mass spectrometry. Low Eh did not lead to a release of formerly sorbed pharmaceuticals from the wastewater irrigated soil. High pH values (>8) of the examined soil resulting from denitrification under reducing conditions prevented the dissolution of Fe-(hydr)oxides and, hence, the potential release of pharmaceuticals. A trend of decreasing concentrations of sulfamethoxazole and bezafibrate with time under moderately reducing conditions supports previous findings of a transformation of these compounds under anaerobic conditions.

6.
PLoS One ; 8(8): e72746, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013964

RESUMO

We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged.


Assuntos
Antropologia Física , Bolívia , Feminino , Humanos , Masculino
7.
PLoS One ; 7(9): e45397, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049795

RESUMO

Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.


Assuntos
Irrigação Agrícola , Enterococcus/genética , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Águas Residuárias/química , Águas Residuárias/microbiologia , Antibacterianos/análise , Produtos Biológicos/análise , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus/isolamento & purificação , Monitoramento Ambiental , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , México , Medicamentos sob Prescrição/análise , RNA Ribossômico 16S/genética , Fatores de Tempo
8.
J Agric Food Chem ; 53(18): 7184-92, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16131128

RESUMO

The efficacy and fate of pesticides in soil strongly depend on sorption reversibility that is known to decrease with increasing contact time (aging). We elucidated the aging dynamics of eight different pesticides in two contrasting agricultural soils of tropical Brazil (Ustox and Psamments), using batch equilibrium experiments and sequential extractions of field samples. Adsorption was best described by Langmuir isotherms for the entire and by Freundlich equations for the lower concentration range. In field samples, water extractable pesticide fractions mostly dissipated at least twice as fast as did the solvent extractable fractions. Hence, in comparison to 0 days K(OC) values, measured field K(OC) values were higher by a factor of 2.6-38 for the clayey Ustox and 2.1-72 for the sandy Psamments toward the end of the experimental period at 80 days after application. The extent of such aging basically increased with increasing polarity of the pesticide. An absolute enrichment of polar pesticides within the final exhaustive acetone--ethyl acetate--water extracts was observed during the experimental period, so that we may deduce that pesticides had redistributed into stronger sorption sites. The time course of the K(OC) development was well-described using a semiempirical equation, which had been employed for temperate soils before.


Assuntos
Glycine max/crescimento & desenvolvimento , Praguicidas/química , Solo/análise , Zea mays/crescimento & desenvolvimento , Adsorção , Brasil , Fenômenos Químicos , Físico-Química , Fatores de Tempo
9.
Environ Pollut ; 135(1): 143-54, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15701401

RESUMO

To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m(-3) in air (>85% of the sum of 21PAHs concentration), up to 1000 microg kg(-1) in plants (>90%), 477 microg kg(-1) in litter (>90%), 32 microg kg(-1) in topsoil (>90%), and 160 microg kg(-1) (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 microg kg(-1)), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 microg kg(-1) compared to <3 microg kg(-1) in interior parts) and high PERY concentrations in all compartments (12-86 microg kg(-1)), indicating an in situ production of PERY in the nests. Our results demonstrate that the deposition of pyrolytic PAHs from the atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Clima Tropical , Animais , Brasil , Isópteros/metabolismo , Árvores/metabolismo
10.
J Environ Qual ; 33(3): 946-55, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15224931

RESUMO

There may be important biological sources of polycyclic aromatic hydrocarbons (PAHs) to the global environment, particularly of naphthalene, phenanthrene, and perylene, that originate in the tropics. We (i) studied the distribution of PAHs among different compartments of a typical Cerrado to locate their sources and (ii) quantified the PAH storage of this ecosystem. The sum of 20 PAH (sigma20PAHs) concentrations ranged from 25 to 666 microg kg(-1) in plant tissue, 7.4 to 32 microg kg(-1) in litterfall, 206 to 287 microg kg(-1) in organic soil, and 10 to 79 microg kg(-1) in mineral soil. Among the living biomass compartments, the bark had the highest mean PAH concentrations and coarse roots the lowest, indicating that PAHs in the plants originated mainly from aboveground sources. Naphthalene and phenanthrene were the most abundant individual PAHs, together contributing 33 to 96% to the sigma20PAHs concentrations. The total storage of the X20PAHs in Cerrado was 7.5 mg m(-2) to a 0.15-m soil depth and 49 mg m(-2) to a 2-m soil depth. If extrapolated to the entire Brazilian Cerrado region, roughly estimated storages of naphthalene and phenanthrene correspond to 7300 and 400 yr of the published annual emissions in the United Kingdom, respectively. The storage of benzo[a]pyrene, a typical marker for fossil fuel combustion, in the Cerrado only corresponds to 0.19 yr of UK emissions. These results indicate that the Brazilian savanna comprises a huge reservoir of naphthalene and phenanthrene originating most likely from the aboveground parts of the vegetation or associated organisms. Thus, the Cerrado might be a globally important source of these PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Biomassa , Brasil , Ecossistema , Monitoramento Ambiental , Raízes de Plantas/química , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA