Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 9: 1020, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108513

RESUMO

Aim: Autonomic modulation responds to ovarian hormones and estrogen increases nitric oxide bioavailability. Also, females have minor susceptibility to sepsis and a higher survival rate. However, few studies have evaluated the role of estrogen in cardiovascular, autonomic, and oxidative parameters during initial endotoxemia and under inducible nitric oxide synthase (iNOS) inhibition in female rats. Methods: Female wistar rats were subjected to ovariectomy and divided into three groups: OVX (ovariectomized), OVX+E (OVX plus daily estradiol) and SHAM (false surgery). After 8 weeks, mean arterial pressure (MAP) and heart rate (HR) were recorded in non-anesthetized catheterized rats, before and after intravenous LPS injection, preceded by S-methylisothiourea sulfate (SMT) injection, or sterile saline. Cardiovascular recordings underwent spectral analysis for evaluation of autonomic modulation. Two hours after LPS, plasma was collected to assess total radical-trapping antioxidant (TRAP), nitrite levels (NO2), lipoperoxidation (LOOH), and paraoxonase 1 (PON1) activity. Results: Two hours after LPS, females treated with SMT presented a decrease of MAP, when compared to saline-LPS groups. At this same time, all SMT+LPS groups presented an increase of sympathetic and a decrease of parasympathetic modulation of HR. Two hours after saline+LPS, OVX presented decreased total radical-trapping antioxidant (TRAP) compared to SHAM. When treated with SMT+LPS, OVX did not altered TRAP, while estradiol reduced LOOH levels. Conclusion: iNOS would be responsible for sympathetic inhibition and consumption of antioxidant reserves of females during endotoxemia, since iNOS is inhibited, treatment with estradiol could be protective in inflammatory challenges.

2.
Exp Gerontol ; 97: 38-48, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28757113

RESUMO

It is known that autonomic modulation is responsive to ovarian hormone levels and that estrogen increases nitric oxide (NO) bioavailability. However, little is known about the interaction of nitric oxide synthase (NOS) isoforms with autonomic modulation, oxidative stress and cardiovascular risk in females. This study aimed to investigate cardiovascular, autonomic and oxidative parameters after selective NOS inhibition. A spectral analysis of systolic arterial pressure (SAP) and heart rate variability (HRV) was performed. NO levels, total antioxidant capacity (TRAP), lipid hydroperoxides (LOOH) and paraoxonase 1 (PON1) activity were measured in the plasma of rats treated with L-NG-nitroarginine methyl ester (L-NAME), S-methylisothiourea (SMT) or saline. Wistar rats, ovariectomized (OVX) with or without estradiol treatment (1mg/kg/day) or with a false ovariectomy (SHAM), were submitted to artery and vein catheterization. Cardiovascular parameters were evaluated before and after the administration of saline or NOS inhibitors. After 2h, plasma samples were collected for biochemical measurement. At baseline, cardiovascular and autonomic parameters were not different among the groups. L-NAME, the constitutive NOS isoform (cNOS) inhibitor, promoted an increase in mean arterial pressure (MAP) and a reduction in the low frequency band (LF) of SAP of SHAM rats, but this increase was smaller in OVX animals, which also showed a reduction in PON1 activity. The decreased activity of PON1 caused by L-NAME was prevented in the OVX+E group. SMT, an inducible NOS isoform (iNOS) inhibitor, promoted an increase in MAP and in the LF of SAP, in interbeat interval (IBI) parameters at LFnu and in LF/HF ratio of HRV in all groups, but the OVX+E had lower levels of NO when compared with the OVX group. Our data suggest that while cNOS contributes to maintaining the activity of PON1 in OVX rats, iNOS activity maintains the levels of NO in OVX+E rats.


Assuntos
Inibidores Enzimáticos/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Isotiurônio/análogos & derivados , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Antioxidantes , Arildialquilfosfatase/sangue , Sistema Nervoso Autônomo/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Isotiurônio/farmacologia , Peróxidos Lipídicos/sangue , Óxido Nítrico/sangue , Ovariectomia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA