Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 18(1): 43, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164731

RESUMO

BACKGROUND: Metastasis causes the most breast cancer-related deaths in women. Here, we investigated the antitumor effect of solid lipid nanoparticles (SLN-DTX) when used in the treatment of metastatic breast tumors using 4T1-bearing BALB/c mice. RESULTS: Solid lipid nanoparticles (SLNs) were produced using the high-energy method. Compritol 888 ATO was selected as the lipid matrix, and Pluronic F127 and Span 80 as the surfactants to stabilize nanoparticle dispersion. The particles had high stability for at least 120 days. The SLNs' dispersion size was 128 nm, their polydispersity index (PDI) was 0.2, and they showed a negative zeta potential. SLNs had high docetaxel (DTX) entrapment efficiency (86%), 2% of drug loading and showed a controlled drug-release profile. The half-maximal inhibitory concentration (IC50) of SLN-DTX against 4T1 cells was more than 100 times lower than that of free DTX after 24 h treatment. In the cellular uptake test, SLN-DTX was taken into the cells significantly more than free DTX. The accumulation in the G2-M phase was significantly higher in cells treated with SLN-DTX (73.7%) than in cells treated with free DTX (23.0%), which induced subsequent apoptosis. TEM analysis revealed that SLN-DTX internalization is mediated by endocytosis, and fluorescence microscopy showed DTX induced microtubule damage. In vivo studies showed that SLN-DTX compared to free docetaxel exhibited higher antitumor efficacy by reducing tumor volume (p < 0.0001) and also prevented spontaneous lung metastasis in 4T1 tumor-bearing mice. Histological studies of lungs confirmed that treatment with SLN-DTX was able to prevent tumor. IL-6 serum levels, ki-67 and BCL-2 expression were analyzed and showed a remarkably strong reduction when used in a combined treatment. CONCLUSIONS: These results indicate that DTX-loaded SLNs may be a promising carrier to treat breast cancer and in metastasis prevention.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Docetaxel/farmacologia , Lipídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/farmacologia , Ácidos Graxos/farmacologia , Feminino , Hexoses/farmacologia , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Tamanho da Partícula , Poloxâmero/farmacologia
2.
Mater Sci Eng C Mater Biol Appl ; 92: 184-195, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184741

RESUMO

Remotely assisted drug delivery by means of magnetic biopolymeric nanoplatforms has been utilized as an important tool to improve the delivery/release of hydrophobic drugs and to address their low cargo capacity. In this work, MnFe2O4 magnetic nanoparticles (MNPs) were synthesized by thermal decomposition, coated with citrate and then functionalized with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers, with chitosan as polycation and sodium alginate as polyanion. Simultaneous conductimetric and potentiometric titrations were employed to optimize the LbL deposition and to enhance the loading capacity of nanoplatforms for curcumin, a hydrophobic drug used in cancer treatment. ~200 nm sized biopolymer platforms with ~12 nm homogeneously embedded MNPs were obtained and characterized by means of XRD, HRTEM, DLS, TGA, FTIR, XPS and fluorescence spectroscopy techniques to access structural, morphological and surface properties, to probe biopolymer functionalization and to quantify drug-loading. Charge reversals (±30 mV) after each deposition confirmed polyelectrolyte adsorption and a stable LbL assembly. Magnetic interparticle interaction was reduced in the biopolymeric structure, hinting at an optimized performance in magnetic hyperthermia for magneto-assisted drug release applications. Curcumin was encapsulated, resulting in an enhanced payload (~100 µg/mg). Nanocytotoxicity assays showed that the biopolymer capping enhanced the biocompatibility of nanoplatforms, maintaining entrapped curcumin. Our results indicate the potential of synthesized nanoplatforms as an alternative way of remotely delivering/releasing curcumin for medical purposes, upon application of an alternating magnetic field, demonstrating improved efficiency and reduced toxicity.


Assuntos
Alginatos/química , Quitosana/química , Curcumina/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Compostos de Manganês/química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Curcumina/metabolismo , Curcumina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA