Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 49(4): 1124-1134, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894787

RESUMO

A set of alkyl aluminum complexes supported by non-symmetric ferrocenyl amidine ligands were used as catalysts for the preparation of cyclic carbonates from epoxides and carbon dioxide using Bu4NI as a co-catalyst. A modified method for the synthesis of aminoferrocene allowed us to obtain this precursor in quantitative yield. Treatment of aminoferrocene with the corresponding acetimidoyl chloride afforded the desired ferrocenyl amidine ligands L1H, (E)-N-(2,6-diisopropylphenyl)-N'-(ferrocenyl)acetimidamide, and L2H, (E)-N-(2,6-dimethylphenyl)-N'-(ferrocenyl)acetimidamide. The reaction of these ligands with 1.0 or 0.5 equiv. of AlMe3 led to the synthesis of aminoferrocene based aluminum complexes ((L1)AlMe2 (1), (L2)AlMe2 (2), (L1)2AlMe (3), and (L2)2AlMe (4)) in excellent yields, which were characterized by spectroscopic and X-ray diffraction methods. In addition, we have studied their electrochemical properties and complex 1 was found to be the most active catalyst for the formation of cyclic carbonates 6a-j from their corresponding epoxides 5a-j and CO2.

2.
Dalton Trans ; (27): 3559-66, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18594704

RESUMO

Two fluorescent ligands, 3,5-dimethyl-4-(6'-sulfonylammonium-1'-azonaphthyl)pyrazole (dmpzn, 1) and 3,5-dimethyl-4-(4'-N,N'-dimethylaminoazophenyl)pyrazole (dmpza, 2) were obtained by condensation of ketoenolic derivatives with hydrazine. 1 and 2 formed the novel dinuclear complexes [(H(2)O)(3)ClRu(micro-L)(2)RuCl(H(2)O)(3)] (3 or 4) and [(H(2)O)(NO)Cl(2)Ru(micro-L)(2)RuCl(2)(NO)(H(2)O)] (6 or 7) (where L 1 = 2 or , respectively) which were characterized by IR, NMR and elemental analysis. The nitrosyl complexes were prepared by bubbling purified nitric oxide through methanol solutions of the corresponding ruthenium(II) chloroderivative or by reaction of the appropriate ligands with Ru(NO)Cl(3). Complexes 3 and 4 were found to bind NO, resulting in an increase in fluorescence. Ligand 1 also formed the mononuclear nitrosyl complex [Ru(NO)(bpy)(2)(dmpzn)]Cl(2) (8) which released NO in water at physiological pH and in the solid state as revealed by fluorescence and IR measurements, respectively.


Assuntos
Compostos Azo/química , Sequestradores de Radicais Livres/química , Óxido Nítrico/química , Compostos Organometálicos/química , Pirazóis/química , Rutênio/química , Fluorescência , Ligantes , Espectroscopia de Ressonância Magnética , Fotoquímica , Espectrofotometria Infravermelho , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA