Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 137: 102273, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403561

RESUMO

Tuberculosis phenotypic detection assays are commonly used in low-resource countries. Therefore, reliable detection methods are crucial for early diagnosis and treatment. The microscopic observation drug susceptibility (MODS) assay is a culture-based test to detect Mycobacterium tuberculosis and characterize drug resistance in 7-10 days directly from sputum. The use of MODS is limited by the availability of supplies necessary for preparing the enriched culture. In this study, we evaluated three dry culture media that are easier to produce and cheaper than the standard one used in MODS [1]: an unsterilized powder-based mixed (Boldú et al., 2007) [2], a sterile-lyophilized medium, and (Sengstake et al., 2017) [3] an irradiated powder-based mixed. Mycobacterial growth and drug susceptibility were evaluated for rifampin, isoniazid, and pyrazinamide (PZA). The alternative cultures were evaluated using 282 sputum samples with positive acid-fast smears. No significant differences were observed in the positivity test rates. The positivity time showed high correlations (Rho) of 0.925, 0.889, and 0.866 between each of the three alternative media and the standard. Susceptibility testing for MDR and PZA showed an excellent concordance of 1 compared to the reference test. These results demonstrate that dry culture media are appropriate and advantageous for use in MODS in low-resource settings.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise Custo-Benefício , Meios de Cultura , Testes de Sensibilidade Microbiana , Pós/farmacologia , Pós/uso terapêutico , Sensibilidade e Especificidade , Tuberculose dos Linfonodos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
2.
PLoS One ; 15(7): e0235643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735615

RESUMO

BACKGROUND: Pyrazinamide is an important drug against the latent stage of tuberculosis and is used in both first- and second-line treatment regimens. Pyrazinamide-susceptibility test usually takes a week to have a diagnosis to guide initial therapy, implying a delay in receiving appropriate therapy. The continued increase in multi-drug resistant tuberculosis and the prevalence of pyrazinamide resistance in several countries makes the development of assays for prompt identification of resistance necessary. The main cause of pyrazinamide resistance is the impairment of pyrazinamidase function attributed to mutations in the promoter and/or pncA coding gene. However, not all pncA mutations necessarily affect the pyrazinamidase function. OBJECTIVE: To develop a methodology to predict pyrazinamidase function from detected mutations in the pncA gene. METHODS: We measured the catalytic constant (kcat), KM, enzymatic efficiency, and enzymatic activity of 35 recombinant mutated pyrazinamidase and the wild type (Protein Data Bank ID = 3pl1). From all the 3D modeled structures, we extracted several predictors based on three categories: structural stability (estimated by normal mode analysis and molecular dynamics), physicochemical, and geometrical characteristics. We used a stepwise Akaike's information criterion forward multiple log-linear regression to model each kinetic parameter with each category of predictors. We also developed weighted models combining the three categories of predictive models for each kinetic parameter. We tested the robustness of the predictive ability of each model by 6-fold cross-validation against random models. RESULTS: The stability, physicochemical, and geometrical descriptors explained most of the variability (R2) of the kinetic parameters. Our models are best suited to predict kcat, efficiency, and activity based on the root-mean-square error of prediction of the 6-fold cross-validation. CONCLUSIONS: This study shows a quick approach to predict the pyrazinamidase function only from the pncA sequence when point mutations are present. This can be an important tool to detect pyrazinamide resistance.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Amidoidrolases/química , Amidoidrolases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Cinética , Modelos Lineares , Simulação de Dinâmica Molecular , Mutagênese , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
3.
J Bacteriol ; 202(2)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636108

RESUMO

Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 µM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 µM) and ZnuA (1 µM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat.


Assuntos
Mycobacterium tuberculosis/enzimologia , Nicotinamidase/metabolismo , Pirazinamida/farmacologia , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Metalochaperonas , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/análogos & derivados
4.
J Clin Microbiol ; 57(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30429257

RESUMO

Although pyrazinamide (PZA) is a key component of first- and second-line tuberculosis treatment regimens, there is no gold standard to determine PZA resistance. Approximately 50% of multidrug-resistant tuberculosis (MDR-TB) and over 90% of extensively drug-resistant tuberculosis (XDR-TB) strains are also PZA resistant. pncA sequencing is the endorsed test to evaluate PZA susceptibility. However, molecular methods have limitations for their wide application. In this study, we standardized and evaluated a new method, MODS-Wayne, to determine PZA resistance. MODS-Wayne is based on the detection of pyrazinoic acid, the hydrolysis product of PZA, directly in the supernatant of sputum cultures by detecting a color change following the addition of 10% ferrous ammonium sulfate. Using a PZA concentration of 800 µg/ml, sensitivity and specificity were evaluated at three different periods of incubation (reading 1, reading 2, and reading 3) using a composite reference standard (MGIT-PZA, pncA sequencing, and the classic Wayne test). MODS-Wayne was able to detect PZA resistance, with a sensitivity and specificity of 92.7% and 99.3%, respectively, at reading 3. MODS-Wayne had an agreement of 93.8% and a kappa index of 0.79 compared to the classic Wayne test, an agreement of 95.3% and kappa index of 0.86 compared to MGIT-PZA, and an agreement of 96.9% and kappa index of 0.90 compared to pncA sequencing. In conclusion, MODS-Wayne is a simple, fast, accurate, and inexpensive approach to detect PZA resistance, making this an attractive assay especially for low-resource countries, where TB is a major public health problem.


Assuntos
Antituberculosos/farmacologia , Colorimetria/métodos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Escarro/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Colorimetria/normas , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/normas , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Tuberculose/microbiologia , Adulto Jovem
5.
Biomol NMR Assign ; 13(1): 21-25, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30229449

RESUMO

Chagas disease is a trypanosomiasis disease inflicted by Trypanosoma cruzi parasite. In Latin America, at least 10 million people are infected and annually, 10,000 casualties are deplored. Macrophage infectivity potentiator protein is one of the major virulence factors secreted by T. cruzi (TcMIP) in order to infect its host but little is known about its mechanism of action. Studies confer TcMIP an important role in the extracellular matrix transmigration and basal lamina penetration. Here, we report the backbone 1H, 13C, and 15N resonance assignment of TcMIP and the comparison of the secondary structure obtained against reported X-ray crystallography data.


Assuntos
Macrófagos/parasitologia , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários/química , Trypanosoma cruzi/metabolismo , Fatores de Virulência/química , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Prótons
6.
BMC Genomics ; 18(1): 769, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020922

RESUMO

BACKGROUND: Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear. RESULTS: We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion. CONCLUSIONS: These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.


Assuntos
Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Genômica , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Pirazinamida/farmacologia , Antituberculosos/farmacologia , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA