Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126144

RESUMO

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) may be familial or sporadic, and twin studies have revealed that even sporadic forms have a significant genetic component. Variants in 55 nuclear genes have been associated with ALS and although mitochondrial dysfunction is observed in ALS, variants in mitochondrial genomes (mitogenomes) have not yet been tested for association with ALS. The aim of this study was to determine whether mitogenome variants are associated with ALS. METHODS: We conducted a genome-wide association study (GWAS) in mitogenomes of 1965 ALS patients and 2547 controls. RESULTS: We identified 51 mitogenome variants with p values <10-7, of which 13 had odds ratios (ORs) >1, in genes RNR1, ND1, CO1, CO3, ND5, ND6, and CYB, while 38 variants had OR <1 in genes RNR1, RNA2, ND1, ND2, CO2, ATP8, ATP6, CO3, ND3, ND4, ND5, ND6, and CYB. The frequencies of haplogroups H, U, and L, the most frequent in our ALS data set, were the same in different onset sites (bulbar, limb, spinal, and axial). Also, intra-haplogroup GWAS revealed unique ALS-associated variants in haplogroups L and U. DISCUSSION: Our study shows that mitogenome single nucleotide variants (SNVs) are associated with ALS and suggests that these SNVs could be included in routine genetic testing for ALS and that mitochondrial replacement therapy has the potential to serve as a basis for ALS treatment.

2.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932149

RESUMO

DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.


Assuntos
DNA Antigo , Genoma Viral , Homem de Neandertal , Animais , Homem de Neandertal/genética , Homem de Neandertal/virologia , DNA Antigo/análise , Evolução Molecular , DNA Viral/genética , Análise de Sequência de DNA/métodos , Humanos , Filogenia , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Fósseis/virologia
3.
BMC Neurol ; 22(1): 439, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401198

RESUMO

BACKGROUND: Narcolepsy type 1 (NT1) is a rare and chronic neurological disease characterized by sudden sleep attacks, overwhelming daytime drowsiness, and cataplexy. When associated with a sudden loss of muscle tone (cataplexy) narcolepsy is classified as type 1, while the absence of cataplexy indicates type 2. Genetic, degenerative, and immunological hypotheses to explain the pathophysiology of NT1 are still a matter of debate. To contribute to the understanding of NT1 genetic basis, here we describe, for the first time, a whole genome analysis of a monozygotic twin pair discordant for NT1. CASE PRESENTATION: We present the case of a pair of 17-year-old male, monozygotic twins discordant for NT1. The affected twin had Epworth Sleepiness Scale (ESS) of 20 (can range from 0 to 24), cataplexy, hypnagogic hallucinations, polysomnography without abnormalities, multiple sleep latency tests (MSLT) positive for narcolepsy, a mean sleep latency of 3 min, sleep-onset REM periods SOREMPs of 5, presence of allele HLA-DQB1*06:02, and Hypocretin-1 level of zero pg/mL (normal values are > 200 pg/mL). The other twin had no narcolepsy symptoms (ESS of 4), normal polysomnography, MSLT without abnormalities, presence of allele HLA-DQB1*06:02, and Hypocretin-1 level of 396,74 pg/mL. To describe the genetic background for the NT1 discordant manifestations in this case, we present the whole-genome analysis of this monozygotic twin pair. The whole-genome comparison revealed that both twins have identical NT1 pathogenic mutations in known genes, such as HLA-DQB1*06:02:01, HLA-DRB1*11:01:02/*15:03:01. The affected twin has the expected clinical manifestation while the unaffected twin has an unexpected phenotype. The unaffected twin has significantly more frameshift mutations as compared to the affected twin (108 versus 75) and mutations that affect stop codons (61 versus 5 in stop gain, 26 versus 2 in start lost). CONCLUSIONS: The differences observed in frameshift and stop codon mutations in the unaffected twin are consistent with loss-of-function effects and protective alleles, that are almost always associated with loss-of-function rare alleles. Also, overrepresentation analysis of genes containing variants with potential clinical relevance in the unaffected twin shows that most mutations are in genes related to immune regulation function, Golgi apparatus, MHC, and olfactory receptor. These observations support the hypothesis that NT1 has an immunological basis although protective mutations in non-HLA alleles might interfere with the expression of the NT1 phenotype and consequently, with the clinical manifestation of the disease.


Assuntos
Cataplexia , Narcolepsia , Masculino , Humanos , Orexinas , Brasil , Narcolepsia/diagnóstico , Narcolepsia/genética , Polissonografia
4.
Front Cell Infect Microbiol ; 12: 906578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051243

RESUMO

The epitranscriptomics of the SARS-CoV-2 infected cell reveals its response to viral replication. Among various types of RNA nucleotide modifications, the m6A is the most common and is involved in several crucial processes of RNA intracellular location, maturation, half-life and translatability. This epitranscriptome contains a mixture of viral RNAs and cellular transcripts. In a previous study we presented the analysis of the SARS-CoV-2 RNA m6A methylation based on direct RNA sequencing and characterized DRACH motif mutations in different viral lineages. Here we present the analysis of the m6A transcript methylation of Vero cells (derived from African Green Monkeys) and Calu-3 cells (human) upon infection by SARS-CoV-2 using direct RNA sequencing data. Analysis of these data by nonparametric statistics and two computational methods (m6anet and EpiNano) show that m6A levels are higher in RNAs of infected cells. Functional enrichment analysis reveals increased m6A methylation of transcripts involved in translation, peptide and amine metabolism. This analysis allowed the identification of differentially methylated transcripts and m6A unique sites in the infected cell transcripts. Results here presented indicate that the cell response to viral infection not only changes the levels of mRNAs, as previously shown, but also its epitranscriptional pattern. Also, transcriptome-wide analysis shows strong nucleotide biases in DRACH motifs of cellular transcripts, both in Vero and Calu-3 cells, which use the signature GGACU whereas in viral RNAs the signature is GAACU. We hypothesize that the differences of DRACH motif biases, might force the convergent evolution of the viral genome resulting in better adaptation to target sequence preferences of writer, reader and eraser enzymes. To our knowledge, this is the first report on m6A epitranscriptome of the SARS-CoV-2 infected Vero cells by direct RNA sequencing, which is the sensu stricto RNA-seq.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Viés , Chlorocebus aethiops , Humanos , Nucleotídeos , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA , Células Vero
5.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834915

RESUMO

The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper function. Among internal modified bases, the N6-methyladenosine, or m6A, is the most frequent, and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs. This process reduces the true complexity of these viral genomes because the incorporation of dNTPs hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF10 and the 3'-untranslated region. We identified fifteen m6A methylated positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly conserved among variants, we show that variants Beta and Eta have a fourth position C > U change in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases.


Assuntos
Adenosina/análogos & derivados , COVID-19/virologia , Evasão da Resposta Imune/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , Regiões 3' não Traduzidas , Adenosina/metabolismo , Animais , Chlorocebus aethiops , Genoma Viral , Humanos , Metilação , Sequenciamento por Nanoporos/métodos , Fases de Leitura Aberta , Análise de Sequência de RNA/métodos , Células Vero
6.
Front Immunol ; 11: 1774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973747

RESUMO

Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5-7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.


Assuntos
Doença de Chagas/parasitologia , Proteoma , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Biologia Computacional , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Via Secretória , Transdução de Sinais , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
7.
Bull Math Biol ; 81(4): 1031-1069, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552628

RESUMO

RNA viruses comprise vast populations of closely related, but highly genetically diverse, entities known as quasispecies. Understanding the mechanisms by which this extreme diversity is generated and maintained is fundamental when approaching viral persistence and pathobiology in infected hosts. In this paper, we access quasispecies theory through a mathematical model based on the theory of multitype branching processes, to better understand the roles of mechanisms resulting in viral diversity, persistence and extinction. We accomplish this understanding by a combination of computational simulations and the theoretical analysis of the model. In order to perform the simulations, we have implemented the mathematical model into a computational platform capable of running simulations and presenting the results in a graphical format in real time. Among other things, we show that the establishment of virus populations may display four distinct regimes from its introduction into new hosts until achieving equilibrium or undergoing extinction. Also, we were able to simulate different fitness distributions representing distinct environments within a host which could either be favorable or hostile to the viral success. We addressed the most used mechanisms for explaining the extinction of RNA virus populations called lethal mutagenesis and mutational meltdown. We were able to demonstrate a correspondence between these two mechanisms implying the existence of a unifying principle leading to the extinction of RNA viruses.


Assuntos
Evolução Molecular , Modelos Genéticos , Vírus de RNA/genética , Simulação por Computador , Extinção Biológica , Variação Genética , Humanos , Conceitos Matemáticos , Mutação , Fenótipo , Vírus de RNA/patogenicidade , Vírus de RNA/fisiologia , Software , Processos Estocásticos , Mutações Sintéticas Letais , Replicação Viral/genética
8.
PLoS One ; 13(1): e0190826, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29300759

RESUMO

Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in other words, if it follows a Poisson law. The ECD is computed from the discretized branch lengths and the parameter λ of the expected Poisson distribution is calculated as the average branch length over the ensemble of trees. To compensate for the auto-correlation in the ensemble of trees and pseudo-replication we take advantage of thinning and effective sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is observed that tree topologies with very long or very short branches lead to Poisson mixtures and in this case we propose the use of the two-sample KS test with samples from two continuous branch length distributions, one obtained from an ensemble of clock-constrained trees and the other from an ensemble of unconstrained trees. Moreover, in this second form the test can also be applied to test for relaxed clock models. The use of a statistically equivalent ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree, yields considerable reduction of the effects of small sample size and provides a gain of power.


Assuntos
Evolução Molecular , Modelos Genéticos , Filogenia , Animais , Ascomicetos/classificação , Ascomicetos/genética , Teorema de Bayes , Simulação por Computador , Ciclo-Oxigenase 1/genética , DNA/genética , Bases de Dados Genéticas , Produtos do Gene env/genética , Humanos , Lentivirus/classificação , Lentivirus/genética , Distribuição de Poisson , Primatas/classificação , Primatas/genética , Proteínas/genética , Estatísticas não Paramétricas , Fatores de Tempo
9.
Algorithms Mol Biol ; 11: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973707

RESUMO

BACKGROUND: In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some next-generation sequencing platforms in order to estimate a population of haplotypes which represent the diversity of the original population. The method proposed here is custom-made to take advantage of the very low error rate and extremely deep coverage per site, which are the main features of some neglected technologies that have not received much attention due to the short length of its reads, which precludes haplotype estimation. This approach allowed us to avoid some hard problems related to haplotype reconstruction (need of long reads, preliminary error filtering and assembly). RESULTS: We propose to measure genetic diversity of a viral population through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the distribution of nucleic bases per site. Moreover, the implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the inference of the multinomial parameters in a Bayesian framework with smoothed Dirichlet estimation. The Bayesian approach provides conditional probability distributions for the multinomial parameters allowing one to take into account the prior information of the control experiment and providing a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals and thus avoids the drawbacks of preliminary error filtering. CONCLUSIONS: The methods described in this paper have been implemented as an integrated tool called Tanden (Tool for Analysis of Diversity in Viral Populations) and successfully tested on samples obtained from HIV-1 strain NL4-3 (group M, subtype B) cultivations on primary human cell cultures in many distinct viral propagation conditions. Tanden is written in C# (Microsoft), runs on the Windows operating system, and can be downloaded from: http://tanden.url.ph/.

10.
Bull Math Biol ; 78(1): 110-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26670316

RESUMO

In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.


Assuntos
Biossíntese de Proteínas/genética , Transcrição Gênica , Simulação por Computador , Expressão Gênica , Conceitos Matemáticos , Modelos Genéticos , Probabilidade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA