Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Antioxidants (Basel) ; 13(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061837

RESUMO

Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.

2.
Front Oncol ; 14: 1341766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571493

RESUMO

Introduction: Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4BG13D and its membrane transporter (PDE6δ). Methods: The antitumor potential of C14 and P8 was assessed using TNBC cell lines, MDA-MB-231, and the radioresistant derivative MDA-MB-231RR, both carrying the K-Ras4B> G13D mutation. We investigated the compounds' effects on K-Ras signaling pathways, cell viability, and tumor growth in vivo. Results: Western blotting analysis determined the negative impact of C14 and P8 on the activation of mutant K-Ras signaling pathways in MDA-MB-231 and MDA-MB-231RR cells. Proliferation assays demonstrated their efficacy as cytotoxic agents against K-RasG13D mutant cancer cells and in inducing apoptosis. Clonogenic assays proven their ability to inhibit TNBC and radioresistant TNBC cell clonogenicity. In In vivo studies, C14 and P8 inhibited tumor growth and reduced proliferation, angiogenesis, and cell cycle progression markers. Discussion: These findings suggest that C14 and P8 could serve as promising adjuvant treatments for TNBC, particularly for non-responders to standard therapies. By targeting overactivated K-Ras and its membrane transporter, these compounds offer potential therapeutic benefits against TNBC, including its radioresistant form. Further research and clinical trials are warranted to validate their efficacy and safety as novel TNBC treatments.

3.
Cells ; 12(20)2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887350

RESUMO

The master-key TP53 gene is a tumor suppressor that is mutated in more than 50% of human cancers. Some p53 mutants lose their tumor suppressor activity and acquire new oncogenic functions, known as a gain of function (GOF). Recent studies have shown that p53 mutants can exert oncogenic effects through specific miRNAs. We identified the differentially expressed miRNA profiles of the three most frequent p53 mutants (p53R273C, p53R248Q, and p53R175H) after their transfection into the Saos-2 cell line (null p53) as compared with p53WT transfected cells. The associations between these miRNAs and the signaling pathways in which they might participate were identified with miRPath Software V3.0. QRT-PCR was employed to validate the miRNA profiles. We observed that p53 mutants have an overall negative effect on miRNA expression. In the global expression profile of the human miRNome regulated by the p53R273C mutant, 72 miRNAs were underexpressed and 35 overexpressed; in the p53R175H miRNAs profile, our results showed the downregulation of 93 and upregulation of 10 miRNAs; and in the miRNAs expression profile regulated by the p53R248Q mutant, we found 167 decreased and 6 increased miRNAs compared with p53WT. However, we found overexpression of some miRNAs, like miR-182-5p, in association with processes such as cell migration and invasion. In addition, we explored whether the induction of cell migration and invasion by the p53R48Q mutant was dependent on miR-182-5p because we found overexpression of miR-182-5p, which is associated with processes such as cell migration and invasion. Inhibition of mutant p53R248Q and miR-182-5p increased FOXF2-MTSS1 levels and decreased cell migration and invasion. In summary, our results suggest that p53 mutants increase the expression of miR-182-5p, and this miRNA is necessary for the p53R248Q mutant to induce cell migration and invasion in a cancer cell model.


Assuntos
Genes p53 , MicroRNAs , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Mutação com Ganho de Função , Proliferação de Células , MicroRNAs/metabolismo , Processos Neoplásicos , Fatores de Transcrição Forkhead/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo
4.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894871

RESUMO

Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.


Assuntos
Carcinoma Ductal Pancreático , MicroRNA Circulante , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNA Circulante/genética , México , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MicroRNAs/metabolismo , Biomarcadores , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas
5.
Diagnostics (Basel) ; 13(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761387

RESUMO

Cryptorchidism (CO) is a risk factor for the development of testicular germ-cell tumors (TGCT). This is supported by reports showing the persistence of gonocytes in CO patients. These cells are proposed to be related to the development of germ-cell neoplasia in situ (GCNIS), which is considered the precursor stage/lesion of TGCT. Therefore, it is proposed that some patients with CO could express some molecular markers related to TGCT. In this study, we analyzed testicular tissue samples from CO, TGCT, and controls. We determined the expression of POU5F1, PLAP, and KIT by immunohistochemistry and that of the hsa-miR-371-373 cluster, hsa-miR-367, and LATS2, PTEN, and IGFR1 genes by RT-qPCR. We then carried out a bioinformatic analysis to identify other possible candidate genes as tumor biomarkers. We found that 16.7% (2/12) of the CO patients presented increased expression of POU5F1, KIT, PLAP, hsa-miR-371-373, and hsa-miR-367 and decreased expression of LATS2 and IGF1R. Finally, the genes ARID4B, GALNT3, and KPNA6 were identified as other possible candidate tumor biomarkers. This is the first report describing the expression of the hsa-miR-371-373 cluster, hsa-miR-367, LATS2, and IGF1R in the testicular tissues of two CO patients with cells immune-positive to POU5F1, PLAP, and KIT, which is similar to what is observed in TGCT.

6.
Genes Chromosomes Cancer ; 62(7): 392-404, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695641

RESUMO

miR-122 has been considered both as tumor suppressor miRNA and oncomiR in breast tumor phenotypes. However, the role of miR-122 in triple-negative breast cancer (TNBC) is still unknown. In this study, the clinical value of miR-122 was used to describe the transcriptomic landscape of TNBC tumors obtained from The Cancer Genome Atlas database. Low expression levels of miR-122 were associated with poor overall survival (OS) of TNBC patients than those with higher expression levels of miR-122. We identified gene expression profiles in TNBC tumors expressed lower or higher miR-122. Gene coexpression networks analysis revealed gene modules and hub genes specific to TNBC tumors with low or high miR-122 levels. Gene ontology and KEGG pathways analysis revealed that gene modules in TNBC with gain of miR-122 were related to cell cycle and DNA repair, while in TNBC with loss of miR-122 were enriched in cell cycle, proliferation, apoptosis and activation of cell migration and invasion. The expression of hub genes distinguished TNBC tumors with gain or loss of miR-122 from normal breast tissues. Furthermore, high levels of hub genes were associated with better OS in TNBC patients. Interestingly, the gene coexpression network related to loss of miR-122 were enriched with target genes of miR-122, but this did not observed in those with gain of miR-122. Target genes of miR-122 are oncogenes mainly associated with cell differentiation-related processes. Finally, 75 genes were identified exclusively associated to loss of miR-122, which are also implicated in cell differentiation. In conclusion, miR-122 could act as tumor suppressor by controlling oncogenes in TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica
7.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142439

RESUMO

Some pediatric patients with cryptorchidism preserve cells with gonocyte characteristics beyond their differentiation period, which could support the theory of the gonocyte as a target for malignancy in the development of testicular neoplasia. One of the key molecules in gonocyte malignancy is represented by microRNAs (miRNAs). The goal of this review is to give an overview of miRNAs, a class of small non-coding RNAs that participate in the regulation of gene expression. We also aim to review the crucial role of several miRNAs that have been further described in the regulation of gonocyte differentiation to spermatogonia, which, when transformed, could give rise to germ cell neoplasia in situ, a precursor lesion to testicular germ cell tumors. Finally, the potential use of miRNAs as diagnostic and prognostic biomarkers in testicular neoplasia is addressed, due to their specificity and sensitivity compared to conventional markers, as well as their applications in therapeutics.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Biomarcadores/metabolismo , Criança , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Espermatogônias/metabolismo , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
8.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632705

RESUMO

The E6 oncoprotein of HPV16 variants differentially alters the transcription of the genes involved in migration and non-coding RNAs such as lncRNAs. The role of the lncRNA MINCR in cervical cancer and its relationship with variants of oncogenic HPV remain unknown. Therefore, the objective of this study was to analyze the effect of the E6 oncoprotein of the AA-c variant of HPV16 in cell migration through the MINCR/miR-28-5p/RAP1B axis. To explore the functional role of MINCR in CC, we used an in vitro model of C33-A cells with exogenous expression of the E6 oncoprotein of the AA-c variant of HPV16. Interfering RNAs performed MINCR silencing, and the expression of miR-28-5p and RAP1B mRNA was analyzed by RT-qPCR. We found that C33-A/AA-c cells expressed MINCR 8-fold higher compared to the control cells. There is an inverse correlation between the expression of miR-28-5p and RAP1B in C33-A/AA-c cells. Our results suggest that MINCR might regulate the expression of RAP1B through the inhibition of miR-28-5p in CC cells expressing the E6 oncoprotein of HPV16 AA-c. We report, for the first time, that the MINCR/miR-28-5p/RAP1B axis positively regulates cell migration in CC-derived cells that express the E6 oncoprotein of the AA-c variant of HPV16.


Assuntos
MicroRNAs , Proteínas Oncogênicas Virais , RNA Longo não Codificante , Neoplasias do Colo do Útero , Proteínas rap de Ligação ao GTP , Linhagem Celular Tumoral , Movimento Celular , Feminino , Papillomavirus Humano 16 , Humanos , MicroRNAs/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , RNA Longo não Codificante/genética , Proteínas Repressoras , Neoplasias do Colo do Útero/genética , Proteínas rap de Ligação ao GTP/metabolismo
9.
J Pediatr Endocrinol Metab ; 34(7): 843-849, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33838085

RESUMO

OBJECTIVES: Cryptorchidism is the most common genitourinary birth defect in live newborn males and is considered as an important risk factor for testicular germ cell tumors and infertility. The Androgen Receptor gene is important in this pathology due to its participation, mainly, in the inguinoscrotal phase of testicular descent. We determine the length of the CAG tract in the Androgen Receptor (AR) gene in Mexican patients with nonsyndromic cryptorchidism. METHODS: One hundred and 15 males were included; of these, 62 had nonsyndromic cryptorchidism and 53 were healthy volunteers. DNA was extracted from a peripheral blood samples, subsequently, the CAG tract in exon 1 of AR gene was amplified by PCR and sequenced. RESULTS: Mexican patients with nonsyndromic cryptorchidism presented 25.03 ± 2.58 repeats of CAG tract in the AR gene compared to 22.72 ± 3.17 repeats of CAG tract in Mexican healthy individuals (p≤0.0001; t value of 4.3). Furthermore, the deletion of codon 57 that corresponds to the deletion of a leucine residue at position 57 (Del L57) in the AR gene was found for the first time in a nonsyndromic cryptorchidism patient. This molecular alteration has been related previously to testicular germ cell tumor (TGCT). CONCLUSIONS: The CAG tract in the AR gene is longer in patients with nonsyndromic cryptorchidism than in healthy individuals, supporting the association between this polymorphism of the AR gene and nonsyndromic cryptorchidism in the Mexican population.


Assuntos
Criptorquidismo/genética , Receptores Androgênicos/genética , Repetições de Trinucleotídeos , Humanos , Masculino
10.
Radiother Oncol ; 159: 48-59, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741468

RESUMO

Radiotherapy, in addition to surgery and systemic chemotherapy, remains the core of the current clinical management of cancer. Radioresistance is one of the major causes of disease progression and mortality in cancer; therefore, it is a significant challenge in the treatment of locally advanced, recurrent and metastatic cancer. Epigenetic mechanisms that control hallmarks of cancer have a key role in the development of radiation resistance of cancer cells. Recent advances in DNA methylation, histone modification, chromatin remodeling and non-coding RNAs identified in the control of signal transduction pathways in cancer and cancer stem cells have provided even greater promise in the improvement of understanding cancer radioresistance. Many epigenetic drugs that target epigenetic enzymes revert the radioresistant phenotypes decreasing the possibility that resistant cancer cells will develop refractory tumors to radiotherapy. Epigenetic profiles identified as regulators of DNA damage repair, hypoxia, cell survival, apoptosis and invasion are determinants in the development of tumor radioresistance; hence, they also are promising in personalized medicine to develop novel targeted therapies or biomarkers to follow-up the effectiveness of radiotherapy. Now, it is clear that radiotherapy can influence a complex epigenetic network for transcriptional reprogramming, enabling the cells to adapt and avoid the effect of radiotherapy. This review aims to highlight the epigenetic modifications identified in cancer radioresistance and to discuss approaches to disable epigenetic networks to increase the sensitivity and specificity of radiotherapy.


Assuntos
Neoplasias , Apoptose , Metilação de DNA , Epigênese Genética , Humanos , Neoplasias/genética , Neoplasias/radioterapia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA