Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0261960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030226

RESUMO

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the 'relaxation' property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Assuntos
Acetilcolina/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Receptor A1 de Adenosina/metabolismo , Animais , Feminino , Cobaias , Masculino , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo
2.
Br J Pharmacol ; 177(19): 4548-4560, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32726456

RESUMO

BACKGROUND AND PURPOSE: Aminoglycoside antibiotics are positively charged molecules that are known to inhibit several ion channels. In this study, we have shown that aminoglycosides also inhibit the activity of Kir4.1 channels. Aminoglycosides inhibit Kir4.1 channels by a pore-blocking mechanism, plugging the central vestibule of the channel. EXPERIMENTAL APPROACH: Patch-clamp recordings were made in HEK-293 cells transiently expressing Kir4.1 channels to analyse the effects of gentamicin, neomycin and kanamycin. In silico modelling followed by mutagenesis were realized to identify the residues critical for aminoglycosides binding to Kir4.1. KEY RESULTS: Aminoglycoside antibiotics block Kir4.1 channels in a concentration- and voltage-dependent manner, getting access to the protein from the intracellular side of the plasma membrane. Aminoglycosides block Ki4.1 with a rank order of potency as follows: gentamicin ˃ neomycin ˃ kanamycin. The residues T128 and principally E158, facing the central cavity of Kir4.1, are important structural determinants for aminoglycosides binding to the channel, as determined by our in silico modelling and confirmed by mutagenesis experiments. CONCLUSION AND IMPLICATIONS: Kir4.1 channels are also target of aminoglycoside antibiotics, which could affect potassium transport in several tissues.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Simulação por Computador , Células HEK293 , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética
3.
Pflugers Arch ; 470(12): 1765-1776, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30155776

RESUMO

The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60-70% of inward rectification, with M2R voltage sensitivity contributing 30-40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.


Assuntos
Potenciais de Ação , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Muscarínico M2/metabolismo , Acetilcolina/metabolismo , Animais , Gatos , Células Cultivadas , Feminino , Átrios do Coração/citologia , Magnésio/metabolismo , Masculino , Miócitos Cardíacos/fisiologia , Poliaminas/metabolismo
4.
Sci Rep ; 8(1): 1769, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379118

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a membrane phospholipid that regulates the function of multiple ion channels, including some members of the voltage-gated potassium (Kv) channel superfamily. The PIP2 sensitivity of Kv channels is well established for all five members of the Kv7 family and for Kv1.2 channels; however, regulation of other Kv channels by PIP2 remains unclear. Here, we investigate the effects of PIP2 on Kv2.1 channels by applying exogenous PIP2 to the cytoplasmic face of excised membrane patches, activating muscarinic receptors (M1R), or depleting endogenous PIP2 using a rapamycin-translocated 5-phosphatase (FKBP-Inp54p). Exogenous PIP2 rescued Kv2.1 channels from rundown and partially prevented the shift in the voltage-dependence of inactivation observed in inside-out patch recordings. Native PIP2 depletion by the recruitment of FKBP-Insp54P or M1R activation in whole-cell experiments, induced a shift in the voltage-dependence of inactivation, an acceleration of the closed-state inactivation, and a delayed recovery of channels from inactivation. No significant effects were observed on the activation mechanism by any of these treatments. Our data can be modeled by a 13-state allosteric model that takes into account that PIP2 depletion facilitates inactivation of Kv2.1. We propose that PIP2 regulates Kv2.1 channels by interfering with the inactivation mechanism.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Shab/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptores Muscarínicos/metabolismo
5.
Pharmacol Rep ; 69(6): 1145-1153, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29128793

RESUMO

BACKGROUND: Phytochemicals are a large group of plant-derived compounds that have a broad range of pharmacological effects. Some of these effects are derived from their action on transport proteins, including ion channels. The present study investigates the effects of the phytochemicals genistein and capsaicin on voltage-gated potassium Kv2.1 channels. METHODS: The whole-cell patch clamp technique was used to explore the regulation of Kv2.1 channels expressed in HEK293 cells by genistein and capsaicin. RESULTS: Both phytochemicals had a profound effect on the gating properties of Kv2.1 channels; the voltage dependence of activation and inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was accelerated, and the recovery from inactivation was delayed. Moreover, genistein and capsaicin inhibited Kv2.1 currents in a concentration dependent manner. CONCLUSION: This study effectively demonstrated the inhibitory effects of genistein and capsaicin on Kv2.1 channels. As Kv2.1 channels play a prominent role in glucose-stimulated insulin secretion, our findings contribute to our understanding of the putative mechanism by which these phytochemicals exert their reported hypoglycemic effects.


Assuntos
Capsaicina/farmacologia , Genisteína/farmacologia , Canais de Potássio Shab/antagonistas & inibidores , Capsaicina/administração & dosagem , Relação Dose-Resposta a Droga , Genisteína/administração & dosagem , Células HEK293 , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shab/metabolismo
6.
Eur J Pharmacol ; 815: 56-63, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993158

RESUMO

Inward rectifier potassium (Kir) channels are expressed in almost all mammalian tissues and contribute to a wide range of physiological processes. Kir4.1 channel expression is found in the brain, inner ear, eye, and kidney. Loss-of-function mutations in the pore-forming Kir4.1 subunit cause an autosomal recessive disorder characterized by epilepsy, ataxia, sensorineural deafness and tubulopathy (SeSAME/EST syndrome). Despite its importance in physiological and pathological conditions, pharmacological research of Kir4.1 is limited. Here, we characterized the effect of pentamidine on Kir4.1 channels using electrophysiology, mutagenesis and computational methods. Pentamidine potently inhibited Kir4.1 channels when applied to the cytoplasmic side under inside-out patch clamp configuration (IC50 = 97nM). The block was voltage dependent. Molecular modeling predicted the binding of pentamidine to the transmembrane pore region of Kir4.1 at aminoacids T127, T128 and E158. Mutation of each of these residues reduced the potency of pentamidine to block Kir4.1 channels. A pentamidine analog (PA-6) inhibited Kir4.1 with similar potency (IC50 = 132nM). Overall, this study shows that pentamidine blocks Kir4.1 channels interacting with threonine and glutamate residues in the transmembrane pore region. These results can be useful to design novel compounds with major potency and specificity over Kir4.1 channels.


Assuntos
Pentamidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Sítios de Ligação , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Pentamidina/metabolismo , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Conformação Proteica
7.
Brain Res ; 1663: 87-94, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28288868

RESUMO

Inwardly rectifying potassium (Kir) channels are expressed in many cell types and contribute to a wide range of physiological processes. Particularly, Kir4.1 channels are involved in the astroglial spatial potassium buffering. In this work, we examined the effects of the cationic amphiphilic drug quinacrine on Kir4.1 channels heterologously expressed in HEK293 cells, employing the patch clamp technique. Quinacrine inhibited the currents of Kir4.1 channels in a concentration and voltage dependent manner. In inside-out patches, quinacrine inhibited Kir4.1 channels with an IC50 value of 1.8±0.3µM and with extremely slow blocking and unblocking kinetics. Molecular modeling combined with mutagenesis studies suggested that quinacrine blocks Kir4.1 by plugging the central cavity of the channels, stabilized by the residues E158 and T128. Overall, this study shows that quinacrine blocks Kir4.1 channels, which would be expected to impact the potassium transport in several tissues.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Quinacrina/farmacologia , Animais , Astrócitos/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Quinacrina/metabolismo , Ratos
8.
Eur J Pharmacol ; 800: 40-47, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28216048

RESUMO

Kir4.1 channels have been implicated in various physiological processes, mainly in the K+ homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch-clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK-293 cells. CQ produced a fast-onset voltage-dependent pore-blocking effect on these channels. In inside-out patches, CQ showed notable higher potency (IC50 ≈0.5µM at +50mV) and faster onset of block when compared to whole-cell configuration (IC50 ≈7µM at +60mV). Also, CQ showed a voltage-dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore-plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ-Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.


Assuntos
Cloroquina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/química , Sítios de Ligação , Cloroquina/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Simulação de Acoplamento Molecular , Porosidade , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Conformação Proteica
9.
Pharmacol Rep ; 67(6): 1273-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481552

RESUMO

BACKGROUND: The aim of the present study was to assess the effects of curcumin on the voltage-dependent Kv2.1 potassium channel. METHODS: The whole-cell patch-clamp technique was used to explore the regulation of Kv2.1 channels expressed in HEK293 cells by curcumin. RESULTS: Curcumin reduced the Kv2.1 currents; the inhibition occurred with a slow time course and was partially reversible. Curcumin did not alter the kinetics and voltage dependence of activation; however, the kinetics of open- and closed-state inactivation was accelerated by curcumin along with a hyperpolarizing shift in the voltage dependence of inactivation. Curcumin inhibition of Kv2.1 current was not use-dependent. CONCLUSIONS: Overall, our data suggest that curcumin inhibits Kv2.1 channels by modulating the inactivation gating, which would be expected to impact cellular physiology.


Assuntos
Curcumina/farmacologia , Canais de Potássio Shab/antagonistas & inibidores , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos
10.
Pflugers Arch ; 462(4): 505-17, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21779761

RESUMO

Cardiac inward rectifier potassium currents determine the resting membrane potential and contribute repolarization capacity during phase 3 repolarization. Quinacrine is a cationic amphiphilic drug. In this work, the effects of quinacrine were studied on cardiac Kir channels expressed in HEK 293 cells and on the inward rectifier potassium currents, I(K1) and I(KATP), in cardiac myocytes. We found that quinacrine differentially inhibited Kir channels, Kir6.2 ∼ Kir2.3 > Kir2.1. In addition, we found in cardiac myocytes that quinacrine inhibited I(KATP) > I(K1). We presented evidence that quinacrine displays a double action towards strong inward rectifier Kir2.x channels, i.e., direct pore block and interference in phosphatidylinositol 4,5-bisphosphate, PIP(2)-Kir channel interaction. Pore block is evident in Kir2.1 and 2.3 channels as rapid block; channel block involves residues E224 and E299 facing the cytoplasmic pore of Kir2.1. The interference of the drug with the interaction of Kir2.x and Kir6.2/SUR2A channels and PIP(2) is suggested from four sources of evidence: (1) Slow onset of current block when quinacrine is applied from either the inside or the outside of the channel. (2) Mutation of Kir2.3(I213L) and mutation of Kir6.2(C166S) increase their affinity for PIP(2) and lowers its sensitivity for quinacrine. (3) Mutations of Kir2.1(L222I and K182Q) which decreased its affinity for PIP(2) increased its sensitivity for quinacrine. (4) Co-application of quinacrine with PIP(2) lowers quinacrine-mediated current inhibition. In conclusion, our data demonstrate how an old drug provides insight into a dual a blocking mechanism of Kir carried inward rectifier channels.


Assuntos
Miócitos Cardíacos/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Células HEK293 , Humanos , Quinacrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA