Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39082483

RESUMO

Hepatic injuries in COVID-19 are not yet fully understood and indirect pathways (without viral replication in the liver) have been associated with the activation of vascular mechanisms of liver injury in humans infected with SARS-CoV-2. Golden Syrian hamsters are an effective model for experimental reproduction of moderate and self-limiting lung disease during SARS-CoV-2 infection. As observed in humans, this experimental model reproduces lesions of bronchointerstitial pneumonia and pulmonary vascular lesions, including endotheliitis (attachment of lymphoid cells to the luminal surface of endothelium). Extrapulmonary vascular lesions are well documented in COVID-19, but such extrapulmonary vascular lesions have not yet been described in the Golden Syrian hamster model of SARS-CoV-2 infection. The study aimed to evaluate microscopic liver lesions in Golden Syrian hamsters experimentally infected with SARS-CoV-2. In total, 38 conventional Golden Syrian hamsters, divided into infected group (n=24) and mock-infected group (n=14), were euthanized at 2-, 3-, 4-, 5-, 7-, 14-, and 15-days post infection with SARS-CoV-2. Liver fragments were evaluated by histopathology and immunohistochemical detection of SARS-CoV-2 Spike S2 antigens. The frequencies of portal vein endotheliitis, lobular activity, hepatocellular degeneration, and lobular vascular changes were higher among SARS-CoV-2-infected animals. Spike S2 antigen was not detected in liver. The main results indicate that SARS-CoV-2 infection exacerbated vascular and inflammatory lesions in the liver of hamsters with pre-existing hepatitis of unknown origin. A potential application of this animal model in studies of the pathogenesis and evolution of liver lesions associated with SARS-CoV-2 infection still needs further evaluation.


Assuntos
COVID-19 , Modelos Animais de Doenças , Fígado , Mesocricetus , SARS-CoV-2 , Animais , COVID-19/patologia , Cricetinae , Fígado/patologia , Fígado/virologia , Masculino
2.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1569547

RESUMO

ABSTRACT Hepatic injuries in COVID-19 are not yet fully understood and indirect pathways (without viral replication in the liver) have been associated with the activation of vascular mechanisms of liver injury in humans infected with SARS-CoV-2. Golden Syrian hamsters are an effective model for experimental reproduction of moderate and self-limiting lung disease during SARS-CoV-2 infection. As observed in humans, this experimental model reproduces lesions of bronchointerstitial pneumonia and pulmonary vascular lesions, including endotheliitis (attachment of lymphoid cells to the luminal surface of endothelium). Extrapulmonary vascular lesions are well documented in COVID-19, but such extrapulmonary vascular lesions have not yet been described in the Golden Syrian hamster model of SARS-CoV-2 infection. The study aimed to evaluate microscopic liver lesions in Golden Syrian hamsters experimentally infected with SARS-CoV-2. In total, 38 conventional Golden Syrian hamsters, divided into infected group (n=24) and mock-infected group (n=14), were euthanized at 2-, 3-, 4-, 5-, 7-, 14-, and 15-days post infection with SARS-CoV-2. Liver fragments were evaluated by histopathology and immunohistochemical detection of SARS-CoV-2 Spike S2 antigens. The frequencies of portal vein endotheliitis, lobular activity, hepatocellular degeneration, and lobular vascular changes were higher among SARS-CoV-2-infected animals. Spike S2 antigen was not detected in liver. The main results indicate that SARS-CoV-2 infection exacerbated vascular and inflammatory lesions in the liver of hamsters with pre-existing hepatitis of unknown origin. A potential application of this animal model in studies of the pathogenesis and evolution of liver lesions associated with SARS-CoV-2 infection still needs further evaluation.

3.
J Fungi (Basel) ; 6(4)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302372

RESUMO

The peptide P10 is a vaccine candidate for Paracoccidioidomycosis, a systemic mycosis caused by fungal species of the genus Paracoccidioides spp. We have previously shown that peptide P10 vaccination, in the presence of several different adjuvants, induced a protective cellular immune response mediated by CD4+ Th1 lymphocytes that was associated with the increased production of IFN-γ in mice challenged with a virulent isolate of Paracoccidoides brasiliensis. Cationic liposomes formulated with dioctadecyldimethylammonium and trehalose dibehenate (DDA/TDB, termed also CAF01-cationic adjuvant formulation) have been developed for safe administration in humans and CAF01 liposomes are utilized as an adjuvant for modulating a robust Th1/Th17 cellular response. We evaluated the efficacy of the adsorption of peptide P10 to CAF01 cationic liposomes and used the generated liposomes to vaccinate C57Bl/6 mice infected with P. brasiliensis. Our results showed that P10 was efficiently adsorbed onto CAF01 liposomes. The vaccination of infected mice with cationic liposomes formulated with DDA/TDB 250/50 µg/mL and 20 µg of P10 induced an effective cellular immune response with increased levels of Th17 cytokines, which correlated with significant decreases in the fungal burdens in lungs and protective granulomatous tissue responses. Hence, cationic liposomes of DDA/TDB 250/50 µg/mL with 20 µg of P10 are a promising therapeutic for safely and effectively improving the treatment of paracoccidioidomycosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA