Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687201

RESUMO

In this study, a novel electrochemical assay for determining 17-ß-estradiol (E2) was proposed. The approach involves modifying a glassy carbon electrode (GCE) with a nanocomposite consisting of α-Fe2O3 nanoparticles supported on carbon nanotubes (CNTs)-denoted as α-Fe2O3-CNT/GCE. The synthesis of the α-Fe2O3-CNT nanocomposite was achieved through a simple and cost-effective hydrothermal process. Morphological and chemical characterization were conducted using scanning electron microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The presence of the α-Fe2O3-CNT film on the GCE surface resulted in an enhanced electrochemical response to E2, preventing electrode surface fouling and mitigating the decrease in peak current intensity during E2 oxidation. These outcomes substantiate the rationale behind the GCE modification. After the optimization of experimental conditions, E2 was determined by the square wave voltammetry technique using 0.1 mol L-1 KCl solution (pH = 7.0) with 20% ethanol as a supporting electrolyte. A linear concentration range of 5.0-100.0 nmol L-1 and a low limit of detection of 4.4 nmol L-1 were obtained. The electroanalytical method using α-Fe2O3-CNT/GCE was applied for E2 determination in pharmaceutical, lake water, and synthetic urine samples. The obtained results were attested by recovery tests and by high-performance liquid chromatography as a comparative technique at a 95% confidence level. Thus, the developed electrochemical sensor is simple and fast to obtain, presents high accuracy, and is viable for determining E2 in routine analysis.

2.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500705

RESUMO

An electrochemical sensor for simultaneous determination of Benserazide (BEZ) and levodopa (L-dopa) was successfully developed using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotube and nitrogen-doped titanium dioxide nanoparticles (GCE/MWCNT/N-TiO2). Cyclic voltammetry and square wave voltammetry were employed to investigate the electrochemical behavior of different working electrodes and analytes. In comparison with unmodified GCE, the modified electrode exhibited better electrocatalytic activity towards BEZ and L-dopa and was efficient in providing a satisfactory separation for oxidation peaks, with a potential difference of 140 mV clearly allows the simultaneous determination of these compounds. Under the optimized conditions, linear ranges of 2.0-20.0 and 2.0-70.0 µmol L-1 were obtained for BEZ and L-dopa, respectively, with a limit of detection of 1.6 µmol L-1 for BEZ and 2.0 µmol L-1 for L-dopa. The method was applied in simultaneous determination of the analytes in pharmaceutical samples, and the accuracy was attested by comparison with HPLC-DAD as the reference method, with a relative error lower than 4.0%.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Levodopa , Benserazida , Eletrodos , Oxirredução , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA