Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1428: 31-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466768

RESUMO

Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.


Assuntos
Desenvolvimento Fetal , Hormônios Tireóideos , Gravidez , Animais , Feminino , Desenvolvimento Fetal/fisiologia , Feto
2.
J Dev Orig Health Dis ; 14(1): 122-131, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35670520

RESUMO

The functional differentiation of the mammary gland (MG) is fundamental for the prevention of mammary pathologies. This process occurs throughout pregnancy and lactation, making these stages key events for the study of pathologies associated with development and differentiation. Many studies have investigated the link between mammary pathologies and thyroid diseases, but most have ignored the role of thyroid hormone (TH) in the functional differentiation of the MG. In this work, we show the long-term impact of hypothyroidism in an animal model whose lactogenic differentiation occurred at low TH levels. We evaluated the ability of the MG to respond to hormonal control and regulate cell cycle progression. We found that a deficit in TH throughout pregnancy and lactation induces a long-term decrease in Rb phosphorylation, increases p53, p21, Cyclin D1 and Ki67 expression, reduces progesterone receptor expression, and induces nonmalignant lesions in mammary tissue. This paper shows the importance of TH level control during mammary differentiation and its long-term impact on mammary function.


Assuntos
Hipotireoidismo , Glândulas Mamárias Animais , Gravidez , Feminino , Animais , Lactação/metabolismo , Hipotireoidismo/complicações , Diferenciação Celular
3.
Neuroendocrinology ; 94(2): 148-57, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21654155

RESUMO

BACKGROUND/AIMS: Progesterone (P(4)) fall provoked by spontaneous or prostaglandin F2α (PGF2α)-induced luteolysis in late pregnant rats triggers a prolactin (PRL) surge 12-24 h later. METHODS: To investigate the hypothalamic mechanism mediating this response, we determined expression of tyrosine hydroxylase (TH), PRL receptors (long form, PRLR(long)), estrogen-α (ERα) and ERß, P(4) (PR) A and B receptors, and STAT5a, STAT5b, suppressors of cytokine signaling 1 (SOCS1), SOCS3 and CIS at mRNA (by semiquantitative and real-time RT-PCR) and protein (by Western blot only for TH, ERα and PRs) levels, and dopamine and DOPAC (by high-performance liquid chromatography) contents in the mediobasal hypothalamus (MBH) 24 h after luteolysis induced by a PGF2α analogue (cloprostenol, 25 µg/rat s.c. at 8 and 12 h on day 19 of pregnancy). RESULTS: PGF2α treatment decreased circulating P(4) and estradiol and increased PRL and the estradiol/P(4) ratio. MBH DOPAC and DOPAC/dopamine ratio fell, indicating decreased dopaminergic transmission. PRLR(long), PRB and ERα mRNA increased. ERα and PR proteins were not modified. However, TH protein and mRNA did not change. PRA, the small PR isoform, was much more abundant than PRB, the isoform considered to mediate P(4) genomic actions. STAT5a, SOCS1 and SOCS3 mRNA were also increased. CONCLUSION: The P(4) fall induced by PGF2α treatment induces PRL release through diminution in MBH dopaminergic transmission without change in TH expression. The increased PRLR along with elevated circulating PRL may be responsible for maintaining high TH expression through activation of short-loop feedback mechanisms, counteracting the effect of the fall in circulating P(4). In parallel, SOCS expression contributes to limit PRL signaling.


Assuntos
Hipotálamo/metabolismo , Prenhez/fisiologia , Progesterona/farmacologia , Prolactina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Dinoprosta/metabolismo , Dopamina/fisiologia , Estradiol/sangue , Feminino , Hipotálamo/efeitos dos fármacos , Luteolíticos/farmacologia , Gravidez , Progesterona/sangue , RNA/biossíntese , RNA/genética , Radioimunoensaio , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Tirosina 3-Mono-Oxigenase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA