Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1132121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025696

RESUMO

Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue. Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 µM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform. Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.

2.
Front Mol Neurosci ; 11: 429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534053

RESUMO

Triclosan, a widely used industrial and household agent, is present as an antiseptic ingredient in numerous products of everyday use, such as toothpaste, cosmetics, kitchenware, and toys. Previous studies have shown that human brain and animal tissues contain triclosan, which has been found also as a contaminant of water and soil. Triclosan disrupts heart and skeletal muscle Ca2+ signaling, damages liver function, alters gut microbiota, causes colonic inflammation, and promotes apoptosis in cultured neocortical neurons and neural stem cells. Information, however, on the possible effects of triclosan on the function of the hippocampus, a key brain region for spatial learning and memory, is lacking. Here, we report that triclosan addition at low concentrations to hippocampal slices from male rats inhibited long-term potentiation but did not affect basal synaptic transmission or paired-pulse facilitation and modified the content or phosphorylation levels of synaptic plasticity-related proteins. Additionally, incubation of primary hippocampal cultures with triclosan prevented both the dendritic spine remodeling induced by brain-derived neurotrophic factor and the emergence of spontaneous oscillatory Ca2+ signals. Furthermore, intra-hippocampal injection of triclosan significantly disrupted rat navigation in the Oasis maze spatial memory task, an indication that triclosan impairs hippocampus-dependent spatial memory performance. Based on these combined results, we conclude that triclosan exerts highly damaging effects on hippocampal neuronal function in vitro and impairs spatial memory processes in vivo.

3.
Front Cell Neurosci ; 12: 403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459562

RESUMO

The induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission entails pre- and postsynaptic Ca2+ signals, which represent transient increments in cytoplasmic free Ca2+ concentration. In diverse synapse types, Ca2+ release from intracellular stores contributes to amplify the Ca2+ signals initially generated by activation of neuronal Ca2+ entry pathways. Here, we used hippocampal slices from young male rats to evaluate whether pharmacological activation or inhibition of Ca2+ release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels modifies LTD induction at Schaffer collateral-CA1 synapses. Pre-incubation of slices with ryanodine (1 µM, 1 h) or caffeine (1 mM, 30 min) to promote RyR-mediated Ca2+ release facilitated LTD induction by low frequency stimulation (LFS), but did not affect the amplitude of synaptic transmission, the profiles of field excitatory postsynaptic potentials (fEPSP) or the paired-pulse (PP) responses. Conversely, treatment with inhibitory ryanodine (20 µM, 1 h) to suppress RyR-mediated Ca2+ release prevented LTD induction, but did not affect baseline synaptic transmission or PP responses. Previous literature reports indicate that LTD induction requires presynaptic CaMKII activity. We found that 1 h after applying the LTD induction protocol, slices displayed a significant increase in CaMKII phosphorylation relative to the levels exhibited by un-stimulated (naïve) slices. In addition, LTD induction (1 h) enhanced the phosphorylation of the presynaptic protein Synapsin I at a CaMKII-dependent phosphorylation site, indicating that LTD induction stimulates presynaptic CaMKII activity. Pre-incubation of slices with 20 µM ryanodine abolished the increased CaMKII and Synapsin I phosphorylation induced by LTD, whereas naïve slices pre-incubated with inhibitory ryanodine displayed similar CaMKII and Synapsin I phosphorylation levels as naïve control slices. We posit that inhibitory ryanodine suppressed LTD-induced presynaptic CaMKII activity, as evidenced by the suppression of Synapsin I phosphorylation induced by LTD. Accordingly, we propose that presynaptic RyR-mediated Ca2+ signals contribute to LTD induction at Schaffer collateral-CA1 synapses.

4.
Front Aging Neurosci ; 9: 111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484388

RESUMO

Recognition memory comprises recollection judgment and familiarity, two different processes that engage the hippocampus and the perirhinal cortex, respectively. Previous studies have shown that aged rodents display defective recognition memory and alterations in hippocampal synaptic plasticity. We report here that young rats efficiently performed at short-term (5 min) and long-term (24 h) hippocampus-associated object-location tasks and perirhinal cortex-related novel-object recognition tasks. In contrast, aged rats successfully performed the object-location and the novel-object recognition tasks only at short-term. In addition, aged rats displayed defective long-term potentiation (LTP) and enhanced long-term depression (LTD). Successful long-term performance of object-location but not of novel-object recognition tasks increased the protein levels of ryanodine receptor types-2/3 (RyR2/RyR3) and of IP3R1 in young rat hippocampus. Likewise, sustained LTP induction (1 h) significantly increased RyR2, RyR3 and IP3R1 protein levels in hippocampal slices from young rats. In contrast, LTD induction (1 h) did not modify the levels of these three proteins. Naïve (untrained) aged rats displayed higher RyR2/RyR3 hippocampal protein levels but similar IP3R1 protein content relative to young rats; these levels did not change following exposure to either memory recognition task or after LTP or LTD induction. The perirhinal cortex from young or aged rats did not display changes in the protein contents of RyR2, RyR3, and IP3R1 after exposure at long-term (24 h) to the object-location or the novel-object recognition tasks. Naïve aged rats displayed higher RyR2 channel oxidation levels in the hippocampus compared to naïve young rats. The RyR2/RyR3 up-regulation and the increased RyR2 oxidation levels exhibited by aged rat hippocampus are likely to generate anomalous calcium signals, which may contribute to the well-known impairments in hippocampal LTP and spatial memory that take place during aging.

5.
Physiology (Bethesda) ; 31(3): 201-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27053734

RESUMO

In this review article, we address how activity-dependent Ca(2+)signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca(2+)signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca(2+)signaling contribute to age-related synaptic plasticity deterioration.


Assuntos
Cálcio/metabolismo , Plasticidade Neuronal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Hipocampo/fisiologia , Humanos , Neurônios/metabolismo
6.
Neurosci Lett ; 469(3): 375-9, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20026184

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA), an important recreational psychostimulant drug, was examined for its ability to alter visuo-spatial learning and synaptic plasticity. Young rats received MDMA (0.2 and 2mg/kg s.c.) twice per day for 6 days while their visuo-spatial learning was tested using the Morris Water Maze. After this, animals were sacrificed and LTP induced in hippocampal slices. Visuo-spatial learning was impaired and LTP reduced, both dose-dependently, without changes in serotonin levels or paired-pulse facilitation. We conclude that low, nontoxic doses of MDMA, applied during several days, slow learning by impairing postsynaptic plasticity.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Envelhecimento , Animais , Região CA1 Hipocampal/fisiologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/fisiologia , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Natação , Fatores de Tempo , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA