Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287438

RESUMO

The following study was performed in order to determine the effect of type of pregnancy on the transcriptional expression of genes that are engaged in angiogenesis and cell turnover/lactogenesis in the ewe mammary gland, evaluating its impact on the plasma metabolic response. In addition, an assessment of its further influence on plasma metabolic response, performance, and muscle transcriptional expression of lipogenic enzymes in progeny lambs was made. Thirteen Ile de France sheep (six twin- and seven single-bearing ewes) were allocated to graze ad libitum naturalized pasture from d 45 pre-partum to day 70 post-partum, while keeping their lambs on the same diet until day 60 after weaning. The samples were collected at different times and analyzed by qRT-PCR and plasma metabolic indicators. The data were processed using SPSS package. The results showed that twin-bearing ewes overexpressed VEGFR1 at birth, and BCL2 at birth and day 35 post-partum; however, single-bearing ewes overexpressed CAIV and IGF1 at day 35 post-partum. Similar metabolite concentrations in blood plasma were found between groups of ewes. The plasma metabolic response in lambs was similar between groups and it did not influence their performance, where a similar transcriptional expression of lipogenic enzymes in muscle was observed. Therefore, the type of pregnancy can explain the slight differences in mRNA expression that were found in angiogenesis and cell turnover/lactogenesis in mammary gland, although these differences not only did not affect the plasma metabolic response in ewes, but they also had no influence on plasma metabolic response, performance, and muscle transcriptional expression of their lambs.

2.
Animals (Basel) ; 9(9)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438555

RESUMO

These trials were carried out to determine firstly the effect of diet and type of pregnancy on the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis inside the sheep mammary gland from late gestation to late lactation. Eighteen Ile de France sheep, 8 twin- and 10 single-bearing ewes were alloted into two groups according to their diet, either based on ad libitum naturalized pasture or red clover hay plus lupine from day -45 pre-partum until day +60 post-partum. Samples from diets and mammary glands were collected at day -10 pre partum (time 1), day +30 (time 2) and day +60 post-partum (time 3) and analyzed by qRT-PCR. Additionally, samples from longissimus dorsi muscle were taken from lambs twice, at weaning and 45 days later, to determine the effect of the maternal treatment with regard to diet and type of pregnancy, on the mRNA expression of genes involved in lipid metabolism. The data was processed using the lme4 package for R, and SPSS Statistics 23.0 for Windows®. The results showed that the group of twin-bearing ewes fed red clover showed a higher expression of genes involved in angiogenesis before lambing and in cell turnover/lactogenesis during late lactation, explained by a lamb survival mechanism to delay apoptosis as a way to keep a secretory cells population and boosted by the diet quality, assuring a longer milk production potential during late lactation. Regarding lambs, apparently the maternal diet would influence the transcriptional expression of lipogenic enzymes in the longissimus dorsi muscle after weaning, but further studies are necessary to validate these results. In summary, Twin-bearing ewes fed red clover performed best at increasing the expression of genes associated with angiogenesis and cell turnover/lactogenesis in the mammary gland.

3.
Animals (Basel) ; 9(2)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781423

RESUMO

This experiment was carried out to determine the effect of breed on mRNA and protein expression levels of lipogenic enzymes acetyl-CoA carboxylase α (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1) plus sterol regulatory element binding transcription factor 1c (SREBP1c) in the subcutaneous fat (SCF) from the back of the animal, and tail fat (TF) of both Chilota and Suffolk Down lambs grazing Calafatal. Eight Chilota and six Suffolk Down 2-month-old male lambs were allocated to graze a "Calafatal", a typical secondary succession of Chiloé Archipelago, Chile. After 62 d, lambs were slaughtered according to Chile's meat industry standards. Fatty acid profile, RT-qPCR, and Western blot analyses from SCF and TF samples were performed. Although the mRNA expression levels of ACC, FAS, SCD1 and SREBP1c in SCF did not differ significantly between breeds (p > 0.05), a trend to higher mRNA expression of FAS and SREBP1c in TF from Chilota lambs was observed (p = 0.06). On the other hand, FAS levels in SCF were higher in Chilota than in Suffolk Down lambs (p < 0.02), although Suffolk Down showed higher fat contents and saturated fatty acid (SFA) proportions than Chilota lambs (p < 0.01). The FAS protein expression in TF was similar in both breeds (p > 0.05). Although the fat content was higher in Suffolk Down than in Chilota lambs (p < 0.01), the SFA proportions were similar in both breeds. Finally, it can be concluded that although mRNA expression of enzymes was similar in both breeds, there were differences in some protein levels in the SCF, partially related with the fatty acid profiles, thus affecting the selection of lamb breed either for human consumption or experimental purposes.

4.
Plant Signal Behav ; 10(8): e1052924, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186626

RESUMO

Sensory integration is vital for motile organisms constantly exposed to changing surroundings. Chlamydomonas reinhardtii is a single-celled green alga found swimming in freshwater. In this type of alga, sensory input is first detected by membrane receptors located in the cell body, and then transduced to the beating cilia by membrane depolarization. Many components of the machinery associated with sensory integration in C. reinhardtii, such as chemoreceptors and repolarization-associated channels, are yet uncharacterized. TRP channels are known mediators for cellular sensing in animal cells and it has been suggested that the C. reinhardtii genome encodes for a set of TRP proteins. Here, by combining behavioral studies with electrophysiological experiments conducted on both population and single alga, we test whether TRP channel blockers affect algal swimming behavior. Our results suggest that a TRP conductance is associated to the repolarization that follows a depolarizing receptor potential, highlighting a primitive function of TRP proteins.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Potenciais da Membrana , Canais de Potencial de Receptor Transitório/metabolismo , Fenômenos Biológicos , Chlamydomonas reinhardtii/genética , Genoma , Dados de Sequência Molecular , Transdução de Sinais
5.
Plant Cell ; 27(1): 177-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25595824

RESUMO

Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes.


Assuntos
Chlamydomonas/metabolismo , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Linhagem Celular , Eletrofisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA