Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(8): 1849-1861, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38533861

RESUMO

The order Sapindales is comprised of nine families and in Brazil it is represented by six, including Rutaceae Juss., which constitutes the largest group of this order. A variety of species of Zanthoxylum L. are distributed throughout the country, and among them is the species Zanthoxylum kleinii (R.S. Cowan) P.G. Waterman, which is found in the states of Brazil. This study aimed to characterize the morphoanatomy of the leaf, petiole, rachis, and stem of the species Z. kleinii. Histochemical tests were performed, and the sections were visualized under optical and scanning electron microscopy. The analysis showed that the morphoanatomical characteristics of the species are: hypoestomatic leaflets; stomata classified as anomocytic, tetracytic, and anisocytic; dorsiventral mesophyll; cavities that produce a secretion of lipid nature, present in the leaflet, rachis, and petiole; colleters distributed in the leaf; presence of simple non-glandular trichomes in all structures; and prismatic crystals in the petiole. Histochemical tests indicated the presence of phenolic and lipophilic compounds, mucilage, and lignin. With the result of this research, it was possible to identify the nature of the compounds secreted by the secretory structures of the leaves; in addition, the morphoanatomical characterization of Z. kleinii can provide relevant data for future studies for other organs of the species not yet described. Furthermore, contributing concomitantly with data for the genus, in this way, supporting to differentiate them. RESEARCH HIGHLIGHTS: Ultrastructural features observed by microscopic techniques. Calcium oxalate crystals present in the rachis. Microchemical tests confirmed the presence of colleters in the leaflet.


Assuntos
Microscopia Eletrônica de Varredura , Folhas de Planta , Zanthoxylum , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Folhas de Planta/química , Zanthoxylum/química , Zanthoxylum/anatomia & histologia , Zanthoxylum/ultraestrutura , Brasil , Caules de Planta/anatomia & histologia , Caules de Planta/ultraestrutura , Caules de Planta/química , Microscopia , Tricomas/ultraestrutura , Tricomas/anatomia & histologia
2.
Microsc Res Tech ; 87(3): 534-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950576

RESUMO

Aconitum napellus L. is a popular medicinal plant extensively used in homeopathy. This article provides detailed morphology and microscopy, including the anatomical and histochemical features of the herb, to aid authentication and quality control. In cross-section, the root in secondary growth shows the phloem surrounded by pericyclic fibers and a well-developed xylem. The stem is irregular in outline, displaying unicellular trichomes and many free collateral vascular bundles encircling the pith. The leaf is dorsiventral, hypostomatic with anomocytic and anisocytic stomata, and shows non-glandular trichomes. The floral parts are characterized by uniseriate epidermises, homogeneous mesophyll, anomocytic stomata on the abaxial surface, trichomes, and oval pollen grains. The tissue fragments in powdered herbs show these characteristics and have numerous starch grains with thimble-shaped, linear or star-shaped hilum. The detailed macroscopic and microscopic analysis provided in this study can help in the authentication and quality control of A. napellus raw materials. RESEARCH HIGHLIGHTS: Key anatomical, micromorphological, and microchemical features of Aconitum napellus are described. The results of the study can support the taxonomy of the genus Aconitum. Morphological standardization of the species reported here is helpful in the quality control of this herb.


Assuntos
Aconitum , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Folhas de Planta/anatomia & histologia , Epiderme Vegetal/ultraestrutura , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura
3.
Antibiotics (Basel) ; 8(4)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683523

RESUMO

The marine environment presents a high biodiversity and a valuable source of bioactive compounds with therapeutic and biotechnological potential. Among the organisms present in marine environment, the endophytic fungi isolated from seaweed stand out. These microorganisms have aroused interest in the scientific community regarding its various activities such as antiviral, antimicrobial, antioxidant, photoprotective, cytotoxic, genotoxic, anti-inflammatory, and anticancer, besides establishing important ecological relations with its hosts. Anticancer molecules derived from marine natural sources are a promising target against different types of cancer. The disease's high rates of morbidity and mortality affect millions of people world wild and the search for new therapeutic alternatives is needed. Thus, this review partially summarizes the methodologies for the isolation of seaweed-derived endophytic fungi, as well as describes the anticancer compounds isolated from such microorganisms, reported in the literature from 2009 to the present. In addition, it describes how some biotechnological processes can help in the discovery of bioactive compounds, especially with anticancer activity.

4.
Curr Microbiol ; 76(5): 575-582, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868211

RESUMO

Cyanobacterial communities from the Brazilian Atlantic coast have been recently sampled through cultured and non-cultured approaches. The maintenance of cyanobacterial strains in laboratory cultures is an important source of material for biological and chemical evaluation as well as biotechnological investigations. In this way, this work aimed to identify, for the first time, by means of GC-MS analyses, the nonpolar chemical profiles of four morphologically distinct cyanobacterial strains: Cyanobium sp. CENA178, Cyanobium sp. CENA181, Oxynema sp. CENA135 and Nostoc sp. CENA175, which were previously isolated from Brazilian mangroves. Six distinct classes of volatile compounds were identified: acids, alcohols, fatty aldehydes, esters, ketones and aliphatic hydrocarbons, from which 12 compounds were detected. The predominant compounds were 1-octadecyne and tetradecanoic acid, obtained from Oxynema sp. CENA135 and; the last one being also observed in Cyanobium sp. CENA181. In addition, the aliphatic hydrocarbon heptadecane was produced by these cyanobacterial strains as well as by Nostoc sp. CENA175. The compounds produced by the studied cyanobacteria have already been reported as possessing pharmaceutical properties such as antioxidant, cytotoxic and antimicrobial activities, besides industrial importance as source of intermediates for biofuel production. It is also important to mention that, considering the number of non-identified compounds, which were not compatible with the searched databases, these strains are promising sources of new compounds, denoting the need for more studies. Accordingly, since these strains were isolated from saline or brackish waters, it is also expected that they might be cultivated in waters not used for human consumption, enabling a low-cost approach for biomass and metabolites production.


Assuntos
Cianobactérias/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Áreas Alagadas , Aldeídos , Biomassa , Brasil , Cianobactérias/classificação , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/metabolismo , Ácido Mirístico/metabolismo , Nostoc/metabolismo , Filogenia
5.
RSC Adv ; 8(52): 29654-29661, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547298

RESUMO

Molecular networking (MN) can efficiently dereplicate extracts and pure compounds. Red algae of the genus Laurencia are rich in halogenated secondary metabolites, mainly sesquiterpenes and C15-acetogenins. Brown algae of the genus Dictyopteris produce mainly C11-hydrocarbons, sesquiterpenes and sulfur-containing compounds, while Dictyota and Canistrocarpus are reported to contain mainly diterpenes. This study performs an exploratory MN analysis of 14 extracts from algae collected in Brazil (including the oceanic islands) and characterizes the secondary metabolites from the analyzed species. The extracts and some isolated metabolites were analyzed by LC-MS using the FastDDA algorithm, and the MS/MS spectra were submitted to GNPS and displayed in Cytoscape 3.5.1. The GNPS platform generated 68 individual nodes and nine family networks. The MN exploratory analysis indicated chemical differences among species, and also in sampling sites for the same species. For some extracts, it was possible to identify mass values that could correspond to terpenoids and C15-acetogenins that have already been isolated from those or related species. An interesting chemodiversity was highlighted between Laurencia catarinensis from two nearby islands, and this was revealed and was also suggested by the family networks. Many nodes in the MN could not be characterized, and these metabolites can be used as targets for isolation in future works.

6.
Rev. bras. farmacogn ; 22(3): 475-481, May-June 2012. ilus
Artigo em Inglês | LILACS | ID: lil-624689

RESUMO

Eugenia pyriformis Cambess., known as uvaia, is a species of Myrtaceae native to Brazil. Its leaves are used in folk medicine to treat gout because they possess the property of inhibiting xanthine oxidase, an enzyme involved in the conversion of xanthine into uric acid. The objective of this work was to study the leaf and stem morpho-anatomy of E. pyriformis, in order to contribute to what is known about the Brazilian flora, and this medicinal plant and potential vegetal drug. Samples of mature leaves and young stems were fixed and sectioned by freehand, or embedded in glycol methacrylate and sectioned with a microtome, and then stained. In addition, microchemical tests and scanning electron microscopy were performed. The leaf is simple, symmetric, elliptic-lanceolate, with an acute apex and base, and an entire margin. The epidermis is uniseriate and coated with a moderately thick cuticle. The stomata are anomocytic and inserted at the same level as the adjacent cells. Unicellular non-glandular trichomes are abundant on the abaxial surface. The mesophyll is dorsiventral. In transverse section, the midrib is plano-convex and the petiole is circular, and both of these structures have a single bicollateral vascular bundle. In the stem, the vascular cylinder consists of external phloem, xylem and internal phloem, traversed by narrow rays. Phenolic compounds, druses and prismatic crystals of calcium oxalate are also present in the leaf and stem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA