Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770395

RESUMO

The development of nanomaterials has drawn considerable attention in nanomedicine to advance cancer diagnosis and treatment over the last decades. Gold nanorods (GNRs) and magnetic nanoparticles (MNPs) have been known as commonly used nanostructures in biomedical applications due to their attractive optical properties and superparamagnetic (SP) behaviors, respectively. In this study, we proposed a simple combination of plasmonic and SP properties into hybrid NPs of citrate-coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium bromide-coated GNRs (CTAB-GNRs). In this regard, two different samples were prepared: the first was composed of Ci-MnFe2O4 (0.4 wt%), and the second contained hybrid NPs of Ci-MnFe2O4 (0.4 wt%) and CTAB-GNRs (0.04 wt%). Characterization measurements such as UV-Visible spectroscopy and transmission electron microscopy (TEM) revealed electrostatic interactions caused by the opposing surface charges of hybrid NPs, which resulted in the formation of small nanoclusters. The performance of the two samples was investigated using magneto-motive ultrasound imaging (MMUS). The sample containing Ci-MnFe2O4_CTAB-GNRs demonstrated a displacement nearly two-fold greater than just using Ci-MnFe2O4; therefore, enhancing MMUS image contrast. Furthermore, the preliminary potential of these hybrid NPs was also examined in magnetic hyperthermia (MH) and photoacoustic imaging (PAI) modalities. Lastly, these hybrid NPs demonstrated high stability and an absence of aggregation in water and phosphate buffer solution (PBS) medium. Thus, Ci-MnFe2O4_CTAB-GNRs hybrid NPs can be considered as a potential contrast agent in MMUS and PAI and a heat generator in MH.

2.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578513

RESUMO

This study aimed to systematically understand the magnetic properties of magnetite (Fe3O4) nanoparticles functionalized with different Pluronic F-127 surfactant concentrations (Fe3O4@Pluronic F-127) obtained by using an improved magnetic characterization method based on three-dimensional magnetic maps generated by scanning magnetic microscopy. Additionally, these Fe3O4 and Fe3O4@Pluronic F-127 nanoparticles, as promising systems for biomedical applications, were prepared by a wet chemical reaction. The magnetization curve was obtained through these three-dimensional maps, confirming that both Fe3O4 and Fe3O4@Pluronic F-127 nanoparticles have a superparamagnetic behavior. The as-prepared samples, stored at approximately 20 °C, showed no change in the magnetization curve even months after their generation, resulting in no nanoparticles free from oxidation, as Raman measurements have confirmed. Furthermore, by applying this magnetic technique, it was possible to estimate that the nanoparticles' magnetic core diameter was about 5 nm. Our results were confirmed by comparison with other techniques, namely as transmission electron microscopy imaging and diffraction together with Raman spectroscopy. Finally, these results, in addition to validating scanning magnetic microscopy, also highlight its potential for a detailed magnetic characterization of nanoparticles.

3.
Phys Med Biol ; 64(21): 215019, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31539896

RESUMO

The shear wave dispersion magneto-motive ultrasound (SDMMUS) method was recently developed to analyze the mechanical properties of a viscoelastic medium. This technique is based on the interaction of magnetic nanoparticles (MNPs) with an external magnetic field to generate a shear wave within the medium labeled with MNPs. The propagation of this wave provides information about the viscoelastic properties of the medium. In a previous work by Arsalani et al (2018), magnetite NPs were synthesized by a co-precipitation method and coated with natural rubber latex (NRL). In order to investigate the effect of NRL on the size and magnetization of MNPs, varying amounts of NRL (zero, 100 µl, and 800 µl of a stock solution of NRL) were used during the synthesis process. The results showed that MNPs prepared with 800 µl of NRL, named as MNPs-800NRL, had the smallest size and highest magnetization. In the present paper, the main objective is to investigate whether MNPs-800NRL, having the highest magnetization, is also the best option for SDMMUS experiments among others. All experiments were performed using gelatin tissue-mimicking phantoms labeled with the aforementioned MNPs. The two factors of core size and magnetization were considered, and based on the observed results, the effect of magnetization was more prominent than that of the core size on the induced displacements. MNPs coated with a thicker NRL shell, having the highest magnetization value, enhanced the sensitivity and the signal to noise ratio in SDMMUS. Various concentrations of these optimized MNPs were also examined, to investigate the lowest possible concentration for observing shear waves in the SDMMUS technique.


Assuntos
Látex/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Borracha/química , Ondas Ultrassônicas , Gelatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA