Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 208, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992782

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS: DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS: DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS: Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.


Assuntos
Carcinoma Hepatocelular , Doxorrubicina , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Hepáticas , Células-Tronco Mesenquimais , RNA Mensageiro , Animais , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Linhagem Celular Tumoral , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Camundongos Endogâmicos C3H , Transfecção
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834291

RESUMO

The severity of non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to steatohepatitis, and it is not yet clearly understood which patients will progress to liver fibrosis or cirrhosis. SPARC (Secreted Protein Acidic and Rich in Cysteine) has been involved in NAFLD pathogenesis in mice and humans. The aim of this study was to investigate the role of SPARC in inflammasome activation, and to evaluate the relationship between the hepatic expression of inflammasome genes and the biochemical and histological characteristics of NAFLD in obese patients. In vitro studies were conducted in a macrophage cell line and primary hepatocyte cultures to assess the effect of SPARC on inflammasome. A NAFLD model was established in SPARC knockout (SPARC-/-) and SPARC+/+ mice to explore inflammasome activation. A hepatic RNAseq database from NAFLD patients was analyzed to identify genes associated with SPARC expression. The results were validated in a prospective cohort of 59 morbidly obese patients with NAFLD undergoing bariatric surgery. Our results reveal that SPARC alone or in combination with saturated fatty acids promoted IL-1ß expression in cell cultures. SPARC-/- mice had reduced hepatic inflammasome activation during the progression of NAFLD. NAFLD patients showed increased expression of SPARC, NLRP3, CASP1, and IL-1ß. Gene ontology analysis revealed that genes positively correlated with SPARC are linked to inflammasome-related pathways during the progression of the disease, enabling the differentiation of patients between steatosis and steatohepatitis. In conclusion, SPARC may play a role in hepatic inflammasome activation in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade Mórbida/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Estudos Prospectivos
3.
Stem Cell Res ; 71: 103157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393721

RESUMO

The arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by the progressive replacement of contractile myocardium by fibro-fatty adipose tissue, that generates ventricular arrhythmias and sudden death in patients. The ACM has a genetic origin with alterations in desmosomal genes with the most commonly mutated being the PKP2 gene. We generated two CRISPR/Cas9 edited iPSCs lines, one iPSC line with a point mutation in PKP2 reported in patients with ACM and another iPSC line with a premature stop codon to knock-out the same gene.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Mutação Puntual , Células-Tronco Pluripotentes Induzidas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Sistemas CRISPR-Cas/genética , Cardiomiopatias/genética , Mutação/genética , Placofilinas/genética , Placofilinas/metabolismo
4.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298538

RESUMO

New therapeutic options for liver cirrhosis are needed. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a promising tool for delivering therapeutic factors in regenerative medicine. Our aim is to establish a new therapeutic tool that employs EVs derived from MSCs to deliver therapeutic factors for liver fibrosis. EVs were isolated from supernatants of adipose tissue MSCs, induced-pluripotent-stem-cell-derived MSCs, and umbilical cord perivascular cells (HUCPVC-EVs) by ion exchange chromatography (IEC). To produce engineered EVs, HUCPVCs were transduced with adenoviruses that code for insulin-like growth factor 1 (AdhIGF-I-HUCPVC-EVs) or green fluorescent protein. EVs were characterized by electron microscopy, flow cytometry, ELISA, and proteomic analysis. We evaluated EVs' antifibrotic effect in thioacetamide-induced liver fibrosis in mice and on hepatic stellate cells in vitro. We found that IEC-isolated HUCPVC-EVs have an analogous phenotype and antifibrotic activity to those isolated by ultracentrifugation. EVs derived from the three MSCs sources showed a similar phenotype and antifibrotic potential. EVs derived from AdhIGF-I-HUCPVC carried IGF-1 and showed a higher therapeutic effect in vitro and in vivo. Remarkably, proteomic analysis revealed that HUCPVC-EVs carry key proteins involved in their antifibrotic process. This scalable MSC-derived EV manufacturing strategy is a promising therapeutic tool for liver fibrosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos , Animais , Proteômica , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo
5.
J Physiol Biochem ; 79(4): 815-831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018492

RESUMO

Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Osteonectina/genética , Osteonectina/metabolismo , Cisteína , Diabetes Mellitus Tipo 2/complicações , Obesidade/metabolismo , Camundongos Knockout
6.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064584

RESUMO

Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased ß1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.


Assuntos
Regulação da Expressão Gênica , Cirrose Hepática/patologia , Fator de Crescimento Neural/metabolismo , Polissacarídeos/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Estresse Fisiológico , Tioacetamida/toxicidade , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/genética
7.
Sci Rep ; 11(1): 6310, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737571

RESUMO

Hepatocellular carcinoma (HCC) arises in the setting of advanced liver fibrosis, a dynamic and complex inflammatory disease. The tumor microenvironment (TME) is a mixture of cellular components including cancer cells, cancer stem cells (CSCs), tumor-associated macrophages (TAM), and dendritic cells (DCs), which might drive to tumor progression and resistance to therapies. In this work, we study the effects of 4-methylumbelliferone (4Mu) on TME and how this change could be exploited to promote a potent immune response against HCC. First, we observed that 4Mu therapy induced a switch of hepatic macrophages (Mϕ) towards an M1 type profile, and HCC cells (Hepa129 cells) exposed to conditioned medium (CM) derived from Mϕ treated with 4Mu showed reduced expression of several CSCs markers and aggressiveness. HCC cells incubated with CM derived from Mϕ treated with 4Mu grew in immunosuppressed mice while presented delayed tumor progression in immunocompetent mice. HCC cells treated with 4Mu were more susceptible to phagocytosis by DCs, and when DCs were pulsed with HCC cells previously treated with 4Mu displayed a potent antitumoral effect in therapeutic vaccination protocols. In conclusion, 4Mu has the ability to modulate TME into a less hostile milieu and to potentiate immunotherapeutic strategies against HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Himecromona/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Himecromona/efeitos adversos , Imunidade/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Liver Int ; 41(7): 1677-1693, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33641248

RESUMO

BACKGROUND AND AIMS: Non-alcoholic fatty liver (NAFLD) and its more serious form non-alcoholic steatohepatitis increase risk of hepatocellular carcinoma (HCC). Lipid metabolic alterations and its role in HCC development remain unclear. SPARC (Secreted Protein, Acidic and Rich in Cysteine) is involved in lipid metabolism, NAFLD and diabetes, but the effects on hepatic lipid metabolism and HCC development is unknown. The aim of this study was to evaluate the role of SPARC in HCC development in the context of NAFLD. METHODS: Primary hepatocyte cultures from knockout (SPARC-/- ) or wild-type (SPARC+/+ ) mice, and HepG2 cells were used to assess the effects of free fatty acids on lipid accumulation, expression of lipogenic genes and de novo triglyceride (TG) synthesis. A NAFLD-HCC model was stabilized on SPARC-/- or SPARC+/+ mice. Correlations among SPARC, lipid metabolism-related gene expression patterns and clinical prognosis were studied using HCC gene expression dataset. RESULTS: SPARC-/- mice increases hepatic lipid deposits over time. Hepatocytes from SPARC-/- mice or inhibition of SPARC by an antisense adenovirus in HepG2 cells resulted in increased TG deposit, expression of lipid-related genes and nuclear translocation of SREBP1c. Human HCC database analysis revealed that SPARC negatively correlated with genes involved in lipid metabolism, and with poor survival. In NAFLD-HCC murine model, the absence of SPARC accelerates HCC development. RNA-seq study revealed that pathways related to lipid metabolism, cellular detoxification and proliferation were upregulated in SPARC-/- tumour-bearing mice. CONCLUSIONS: The absence of SPARC is associated with an altered hepatic lipid metabolism, and an accelerated NAFLD-related HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteonectina/genética , Osteonectina/metabolismo
9.
Gut ; 70(7): 1362-1374, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33106353

RESUMO

OBJECTIVE: The RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC). DESIGN: We studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated. RESULTS: Among the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo. CONCLUSIONS: The bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Guanidinas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Bases de Dados Genéticas , Inibidores Enzimáticos/uso terapêutico , Guanidinas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Terapia de Alvo Molecular , Transplante de Neoplasias , Transcriptoma/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/genética
10.
Cells ; 9(11)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187255

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is defined clinicopathologically by the accumulation of lipids in >5% of hepatocytes and the exclusion of secondary causes of fat accumulation. NAFLD encompasses a wide spectrum of liver damage, extending from simple steatosis or non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH)-the latter is characterized by inflammation and hepatocyte ballooning degeneration, in addition to the steatosis, with or without fibrosis. NAFLD is now the most common cause of chronic liver disease in Western countries and affects around one quarter of the general population. It is a multisystem disorder, which is associated with an increased risk of type 2 diabetes mellitus as well as liver- and cardiovascular-related mortality. Although earlier studies had suggested that NAFL is benign (i.e., non-progressive), cumulative evidence challenges this dogma, and recent data suggest that nearly 25% of those with NAFL may develop fibrosis. Importantly, NAFLD patients are more susceptible to the toxic effects of alcohol, drugs, and other insults to the liver. This is likely due to the functional impairment of steatotic hepatocytes, which is virtually undetectable by current clinical tests. This review provides an overview of the current evidence on the clinical significance of NAFL and discusses the molecular basis for NAFL development and progression.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Animais , COVID-19/complicações , Progressão da Doença , Estresse do Retículo Endoplasmático , Fígado Gorduroso/fisiopatologia , Humanos , Fígado/lesões , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA