Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Agron Sustain Dev ; 41(5): 62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484434

RESUMO

In Latin America, the cultivation of Arabica coffee (Coffea arabica) plays a critical role in rural livelihoods, biodiversity conservation, and sustainable development. Over the last 20 years, coffee farms and landscapes across the region have undergone rapid and profound biophysical changes in response to low coffee prices, changing climatic conditions, severe plant pathogen outbreaks, and other drivers. Although these biophysical transformations are pervasive and affect millions of rural livelihoods, there is limited information on the types, location, and extent of landscape changes and their socioeconomic and ecological consequences. Here we review the state of knowledge on the ongoing biophysical changes in coffee-growing regions, explore the potential socioeconomic and ecological impacts of these changes, and highlight key research gaps. We identify seven major land-use trends which are affecting the sustainability of coffee-growing regions across Latin America in different ways. These trends include (1) the widespread shift to disease-resistant cultivars, (2) the conventional intensification of coffee management with greater planting densities, greater use of agrochemicals and less shade, (3) the conversion of coffee to other agricultural land uses, (4) the introduction of Robusta coffee (Coffea canephora) into areas not previously cultivated with coffee, (5) the expansion of coffee into forested areas, (6) the urbanization of coffee landscapes, and (7) the increase in the area of coffee produced under voluntary sustainability standards. Our review highlights the incomplete and scattered information on the drivers, patterns, and outcomes of biophysical changes in coffee landscapes, and lays out a detailed research agenda to address these research gaps and elucidate the effects of different landscape trajectories on rural livelihoods, biodiversity conservation, and other aspects of sustainable development. A better understanding of the drivers, patterns, and consequences of changes in coffee landscapes is vital for informing the design of policies, programs, and incentives for sustainable coffee production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13593-021-00712-0.

2.
PLoS One ; 12(10): e0184638, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28972981

RESUMO

Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008-2013 average). A total of 55 cohorts totaling 2,268 pods of 3-10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen's long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods.


Assuntos
Agaricales/patogenicidade , Cacau/microbiologia , Microclima
3.
PLoS One ; 12(1): e0169133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28046054

RESUMO

The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.


Assuntos
Agricultura/métodos , Coffea/crescimento & desenvolvimento , Coffea/microbiologia , Praguicidas , Doenças das Plantas/microbiologia , Costa Rica , Produtos Agrícolas , Abastecimento de Alimentos , Modelos Lineares , Modelos Teóricos , Chuva
4.
PLoS One ; 11(8): e0159392, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504826

RESUMO

The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed.


Assuntos
Café , Fazendeiros , Controle de Pragas , Doenças das Plantas , Pesquisa , Colaboração Intersetorial , Percepção , Doenças das Plantas/prevenção & controle , População Rural
5.
Phytopathology ; 104(3): 275-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24168046

RESUMO

Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.


Assuntos
Agaricales/fisiologia , Cacau/microbiologia , Doenças das Plantas/microbiologia , Biodiversidade , Costa Rica , Produtos Agrícolas , Árvores
6.
Phytopathology ; 97(12): 1532-42, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18943713

RESUMO

ABSTRACT We monitored the development of American leaf spot of coffee, a disease caused by the gemmiferous fungus Mycena citricolor, in 57 plots in Costa Rica for 1 or 2 years in order to gain a clearer understanding of conditions conducive to the disease and improve its control. During the investigation, characteristics of the coffee trees, crop management, and the environment were recorded. For the analyses, we used partial least-squares regression via the spline functions (PLSS), which is a nonlinear extension to partial least-squares regression (PLS). The fungus developed well in areas located between approximately 1,100 and 1,550 m above sea level. Slopes were conducive to its development, but eastern-facing slopes were less affected than the others, probably because they were more exposed to sunlight, especially in the rainy season. The distance between planting rows, the shade percentage, coffee tree height, the type of shade, and the pruning system explained disease intensity due to their effects on coffee tree shading and, possibly, on the humidity conditions in the plot. Forest trees and fruit trees intercropped with coffee provided particularly propitious conditions. Apparently, fertilization was unfavorable for the disease, probably due to dilution phenomena associated with faster coffee tree growth. Finally, series of wet spells interspersed with dry spells, which were frequent in the middle of the rainy season, were critical for the disease, probably because they affected the production and release of gemmae and their viability. These results could be used to draw up a map of epidemic risks taking topographical factors into account. To reduce those risks and improve chemical control, our results suggested that farmers should space planting rows further apart, maintain light shading in the plantation, and prune their coffee trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA