Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 638: 66-75, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442234

RESUMO

FAM129B is one of Niban-like proteins described in neoplastic cells and implicated in melanoma cell invasion, but no reports have been published on FAM129B and cell differentiation. We show that FAM129B is early and transiently expressed and crucial for 3T3-F442A adipogenesis. Fam129b is expressed downstream of the early genes Cebpb, Klf4, Klf5 and Srebf1a, but upstream of Pparg2 since knockdown of Fam129b blocked Pparg2 expression and adipose differentiation. Glycogen synthase kinase 3 beta activity, a crucial kinase for adipogenesis, and the ERK1/2 are involved in FAM129B phosphorylation as part of the adipogenic program. Phosphorylated FAM129B is crucial for Pparg2 expression and the lipogenic gene expression downstream of Pparg2, and hence for adipogenesis. Fam129b knockdown reduced adipocyte cluster formation and size, regulating commitment and clonal amplification. In vivo, BAT, inguinal and epidydimal fat expressed Fam129b, suggesting a role in adipose tissue development. We conclude that FAM129B is a cooperative protein that regulates differentiation during the early stages of adipogenesis.


Assuntos
Adipócitos , Adipogenia , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular , Lipogênese , Processamento de Proteína Pós-Traducional
2.
F1000Res ; 11: 10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464048

RESUMO

Background. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic. Among the risk factors associated with the severity of this disease is the presence of several metabolic disorders. For this reason, the aim of this research was to identify the comorbidities and laboratory parameters among COVID-19 patients admitted to the intensive care unit (ICU), comparing the patients who required invasive mechanical ventilation (IMV) with those who did not require IMV, in order to determine the clinical characteristics associated with the COVID-19 severity. Methods. We carried out a cross-sectional study among 152 patients who were admitted to the ICU from April 1 st to July 31 st, 2021, in whom the comorbidities and laboratory parameters associated with the SARS-CoV-2 infection severity were identified. The data of these patients was grouped into two main groups: "patients who required IMV" and "patients who did not require IMV". The nonparametric Mann-Whitney U test for continuous data and the χ2 test for categorical data were used to compare the variables between both groups. Results. Of the 152 COVID-19 patients who were admitted to the ICU, 66 required IMV and 86 did not require IMV. Regarding the comorbidities found in these patients, a higher prevalence of type 2 diabetes mellitus (T2DM), hypertension and obesity was observed among patients who required IMV vs. those who did not require IMV ( p<0.05). Concerning laboratory parameters, only glucose, Interleukin 6 (IL-6), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were significantly higher among patients who required IMV than in those who did not require IMV ( p<0.05). Conclusion. This study performed in a Mexican population indicates that comorbidities such as: T2DM, hypertension and obesity, as well as elevated levels of glucose, IL-6, LDH and CRP are associated with the COVID-19 severity.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Hipertensão , COVID-19/epidemiologia , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Glucose , Humanos , Hipertensão/epidemiologia , Interleucina-6 , México/epidemiologia , Obesidade , SARS-CoV-2
3.
Arch Virol ; 166(2): 475-489, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33394173

RESUMO

Domestic swine have been introduced by humans into a wide diversity of environments and have been bred in different production systems. This has resulted in an increased risk for the occurrence and spread of diseases. Although viromes of swine in intensive farms have been described, little is known about the virus communities in backyard production systems around the world. The aim of this study was to describe the viral diversity of 23 healthy domestic swine maintained in rural backyards in Morelos, Mexico, through collection and analysis of nasal and rectal samples. Next-generation sequencing was used to identify viruses that are present in swine. Through homology search and bioinformatic analysis of reads and their assemblies, we found that rural backyard swine have a high degree of viral diversity, different from those reported in intensive production systems or under experimental conditions. There was a higher frequency of bacteriophages and lower diversity of animal viruses than reported previously. In addition, sapoviruses, bocaparvoviruses, and mamastroviruses that had not been reported previously in our country were identified. These findings were correlated with the health status of animals, their social interactions, and the breeding/rearing environment (which differed from intensive systems), providing baseline information about viral communities in backyard swine.


Assuntos
Bacteriófagos/genética , Doenças dos Suínos/virologia , Viroma/genética , Animais , Biologia Computacional/métodos , Fazendas , México , Suínos
4.
Biochem Biophys Res Commun ; 524(1): 135-141, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980165

RESUMO

Entamoeba invadens is the protozoan which causes multiple damages in reptiles and is considered a prototype for the study of the Entamoeba encystment/excystment in vitro. Here we report that EinCerS2 knockdown promoted decrease in sphingomyelin (SM) subspecies with long-chain fatty acids (24:0) down to 50% but increase sphingolipids with short-chain fatty acids (16:0) up to three times in both trophozoites and cysts of E. invadens. EinCerS2 silencing also resulted in decreased trophozoites' movement, proliferation, cysts formation, and trophozoites hatched after excystment. By immunofluorescence assays, a polyclonal antibody against EinCerS2 detected the enzyme in the cytoplasm of E. invadens trophozoites, colocalizing with Endoplasmic Reticulum-resident cognate EiSERCA. Interestingly, EinCerS2 was redistributed close to the plasma membrane during encystation, suggesting that the generation of diacylglycerol (DAG) via synthesis of sphingolipids and the activation protein kinase C might participate in the encystment process of E. invadens.


Assuntos
Movimento Celular , Entamoeba/citologia , Entamoeba/enzimologia , Técnicas de Silenciamento de Genes , Oxirredutases/metabolismo , Trofozoítos/enzimologia , Trofozoítos/crescimento & desenvolvimento , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo/genética , Entamoeba/genética , Amplificação de Genes , Estágios do Ciclo de Vida , Oxirredutases/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingomielinas/metabolismo
5.
Biochem Biophys Res Commun ; 522(3): 574-579, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31785811

RESUMO

Sphingolipids (SLs) synthesis involves a complex metabolic pathway occurring between the endoplasmic reticulum (ER) and Golgi apparatus, generating ceramide synthesis and complex lipids, respectively. Here we show that E. histolytica, apparently lacking cellular organelles (ER and Golgi apparatus), synthesizes a wide variety of sphingolipid subspecies, being particularly abundant those of long-chain fatty acids. In silico analysis showed five putative genes coding for ceramide synthases (CerS), all of them coding for proteins containing the TLC domain, a region conserved in CerS of multiple organisms. These genes are abundantly expressed in different growth phases. Silencing and overexpression of CerS C4M4U4 (the closest homolog of human CerS 2 and 3) demonstrated its involvement in the synthesis of ceramide. Additionally, we identify C4M4U4, SMS2 and PKC (α, ßII) proteins and their subcellular localization of E. histolytica, suggesting that these subcellular compartments might be involved in the biosynthesis and signaling pathway of sphingolipids, and evidencing different sphingolipid synthesis pathways in Entamoeba.


Assuntos
Entamoeba histolytica/metabolismo , Esfingolipídeos/metabolismo , Vias Biossintéticas , Entamoeba histolytica/genética , Entamebíase/parasitologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Esfingolipídeos/genética , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
6.
Biochem Biophys Res Commun ; 508(4): 1031-1037, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30545628

RESUMO

Entamoeba invadens is a protozoan, which causes multiple damages in reptiles and is considered a prototype for the study of the Entamoeba encystment in vitro. Here we report for the first time the role of the de novo synthesis pathway of sphingolipids during the encystment of E. invadens. In silico analysis showed that this parasite has six putative genes coding for ceramide synthases (CerS), all of them coding for proteins containing the Lag1p motif, a region conserved in the ceramide synthases of multiple organisms, suggesting that they might be bona fide CerS. The six genes of E. invadens are differentially expressed at different time intervals in both stages trophozoite and cyst, based on the results obtained through qRT-PCR assays, the genes involved in the synthesis of sphingolipids with long-chain fatty acids CerS 2,3,4 (EIN_046610, EIN_097030, EIN_130350) have maximum points of relative expression in both stages of the E. invadens life cycle, which strongly suggest that the signaling exerted from the synthesis pathway of sphingolipids is essential for the encystment of E. invadens, since the generation of the more abundant sphingomyelin (SM) subspecies with long-chain fatty acids are fundamental for the parasite to reach its conversion from trophozoite to cyst. When myriocin was used as an inhibitor of serine palmitoyl CoA transferase (SPT), first enzyme in the de novo biosynthesis of sphingolipids, the trophozoites of E. invadens were unable to reach the encystment. Since the effect of myriocin was reversed with exogenous d-erythrosphingosine (DHS), it was demonstrated that the inhibition was specific and it was confirmed that the synthesis of sphingolipids play an essential role during the encystment process of E. invadens.


Assuntos
Entamoeba/metabolismo , Encistamento de Parasitas , Esfingolipídeos/metabolismo , Entamoeba/efeitos dos fármacos , Entamoeba/enzimologia , Entamoeba/genética , Ácidos Graxos Monoinsaturados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Estágios do Ciclo de Vida/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Encistamento de Parasitas/efeitos dos fármacos , Filogenia , Esfingolipídeos/biossíntese , Esfingomielinas/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Trofozoítos/efeitos dos fármacos , Trofozoítos/genética
7.
Sci Rep ; 8(1): 14539, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267030

RESUMO

Plants respond to drought stress through the ABA dependent and independent pathways, which in turn modulate transcriptional regulatory hubs. Here, we employed Illumina RNA-Seq to analyze a total of 18 cDNA libraries from leaves, sap, and roots of papaya plants under drought stress. Reference and de novo transcriptomic analyses identified 8,549 and 6,089 drought-responsive genes and unigenes, respectively. Core sets of 6 and 34 genes were simultaneously up- or down-regulated, respectively, in all stressed samples. Moreover, GO enrichment analysis revealed that under moderate drought stress, processes related to cell cycle and DNA repair were up-regulated in leaves and sap; while responses to abiotic stress, hormone signaling, sucrose metabolism, and suberin biosynthesis were up-regulated in roots. Under severe drought stress, biological processes related to abiotic stress, hormone signaling, and oxidation-reduction were up-regulated in all tissues. Moreover, similar biological processes were commonly down-regulated in all stressed samples. Furthermore, co-expression network analysis revealed three and eight transcriptionally regulated modules in leaves and roots, respectively. Seventeen stress-related TFs were identified, potentially serving as main regulatory hubs in leaves and roots. Our findings provide insight into the molecular responses of papaya plant to drought, which could contribute to the improvement of this important tropical crop.


Assuntos
Carica/genética , Regulação da Expressão Gênica de Plantas , Aclimatação , Carica/fisiologia , Reparo do DNA , Secas , Redes Reguladoras de Genes , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
8.
Biochem Biophys Res Commun ; 490(3): 780-785, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28645612

RESUMO

Inflammation has been recently acknowledged as a key participant in the physiopathology of oncogenesis and tumor progression. The inflammatory cytokine IL-1ß has been reported to induce the expression of markers associated with malignancy in breast cancerous cells through Epithelial-Mesenchymal Transition (EMT). Aggressive breast cancer tumors classified as Triple Negative do not respond to hormonal treatment because they lack three crucial receptors, one of which is the estrogen receptor alpha (ERα). Expression of ERα is then considered a good prognostic marker for tamoxifen treatment of this type of cancer, as the binding of this drug to the receptor blocks the transcriptional activity of the latter. Although it has been suggested that inflammatory cytokines in the tumor microenvironment could regulate ERα expression, the mechanism(s) involved in this process have not yet been established. We show here that, in a cell model of breast cancer cells (6D cells), in which the inflammatory cytokine IL-1ß induces EMT by activation of the IL-1ß/IL-1RI/ß-catenin pathway, the up regulation of TWIST1 leads to methylation of the ESR1 gene promoter. This epigenetic modification produced significant decrease of the ERα receptor levels and increased resistance to tamoxifen. The direct participation of IL-1ß in these processes was validated by blockage of the cytokine-induced signaling pathway by wortmannin inactivation of the effectors PI3K/AKT. These results support our previous reports that have suggested direct participation of the inflammatory cytokine IL-1ß in the transition to malignancy of breast cancer cells.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Interleucina-1beta/imunologia , Tamoxifeno/farmacologia , Mama/efeitos dos fármacos , Mama/imunologia , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Metilação de DNA/efeitos dos fármacos , Receptor alfa de Estrogênio/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/imunologia
9.
Cancer Lett ; 390: 39-44, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093282

RESUMO

Epithelial to mesenchymal transition (EMT) of tumor cells facilitates their progress to metastasis. In the tumor microenvironment the inflammatory cytokine 1ß (IL-1ß) has been associated with tumor development and invasiveness. IL-1ß-induced EMT triggers the expression of markers associated with malignancy. We have recently reported that an IL-1ß-highly responsive clone (6D cells) from non-invasive MCF-7 breast cancer cells activates PI3K/Rac and IL-1RI/ß-catenin pathways that up-regulate the transcription of genes involved in an EMT-like process. However, a correlation between the EMT program induced by a pro-inflammatory environment, and the acquisition of chemoresistance has not been yet determined in these cells. In this work, we report the expression of cell survival genes after IL-1ß stimulation of 6D cells. The expression of CDKN1A, TP63, SFN and, particularly, BIRC3 was found to be up-regulated in a RNA-seq analysis and validated by qPCR. Cells stimulated with IL-1ß when challenged with doxorubicin showed resistance to the drug, whereas silencing of BIRC3 decreased viability of the cells treated with the drug. Our present results show that IL-1ß confers doxorubicin resistance to breast cancer cells, underlining the importance of an inflammatory environment in cancer malignancy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Inibidoras de Apoptose/genética , Interleucina-1beta/farmacologia , Ubiquitina-Proteína Ligases/genética , Regulação para Cima/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-1beta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
Genom Data ; 11: 92-94, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28066713

RESUMO

Next-generation technologies for determination of genomics and transcriptomics composition have a wide range of applications. Moreover, the development of tools for big data set analysis has allowed the identification of molecules and networks involved in metabolism, evolution or behavior. By natural habitats aquatic organisms have implemented molecular strategies for survival, including the production and secretion of toxic compounds for their predators; therefore these organisms are possible sources of proteins or peptides with potential biotechnological application. In the last decade anthozoans, mainly octocorals but also sea anemones, have been proben to be a source of natural products. Members of the genus Anthopleura are one of the best known and most studied sea anemones because they are common constituents of rocky intertidal communities and show interesting ecological and biological phenomena (e.g. intraespecific competition, symbiosis, etc.); however, many aspects of these taxa remain in need to be analyzed. This work describes the transcriptome sequencing of Anthopleura dowii Verrill, 1869 (Cnidaria: Anthozoa: Actiniaria); this is the first report of this kind for these species. The data set used to construct the transcriptome has been deposited on NCBI's database. Illumina sequence reads are available under BioProject accession number PRJNA329297 and Sequence Read Archive under accession number SRP078992.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA