Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570251

RESUMO

Swine production is of great importance worldwide and has huge economic and commercial impact. Due to problems with bacterial infection, the use of antimicrobials has increased in the last decades, particularly in Latin America and Asia. This has led to concerns about antimicrobial resistance, which poses risks to human health and the environment. The use of probiotic organisms has been proposed as an alternative to this use, as these beneficial bacteria can produce antimicrobial peptides, such as bacteriocins, which allow the induction of inhibitory effects against pathogenic microorganisms. Among probiotics, some bacteria stand out with the inhibition of animal pathogens. The bacteriocin-like inhibitory substances (BLISs) of Lactococcus lactis subsp. lactis strain L2, present in its cell-free supernatant, were tested against pathogenic strains isolated from pig samples, such as Escherichia coli, Salmonella enterica, Streptococcus suis, Streptococcus dysgalactiae, Staphylococcus hyicus, and Enterococcus faecalis. Compounds secreted by L. lactis L2 have been shown to inhibit the growth of some pathogenic species, particularly Gram-positive bacteria, with S. suis being the most prominent. Antimicrobial peptides with a molecular size of 500-1160 Daltons were isolated from BLISs. The results highlight the potential of L. lactis BLISs and its peptides as natural antimicrobials for use in the food industry and to reduce the use of growth promoters in animal production.

2.
Braz J Microbiol ; 51(3): 949-956, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32144691

RESUMO

The growing demand of consumers for synthetic chemical-free foods has increased the search for natural preservatives such as bacteriocins and bacteriocin-like inhibitory substances (BLIS) to give them adequate microbiological safety, sensory characteristics, and shelf life. In this study, the antimicrobial activity of BLIS produced by Pediococcus pentosaceus ATCC 43200 was compared with that of nisin. Lactobacillus sakei ATCC 15521, Listeria seeligeri NCTC 11289, Enterococcus En2052 and En2865, and Listeria monocytogenes CECT 934 and NADC 2045 exhibited larger inhibition halos in BLIS-treated than in Nisaplin-treated samples, unlike Listeria innocua NCTC 11288. In artificially contaminated ready-to-eat pork ham, BLIS was effective in inhibiting the growth of L. seeligeri NCTC 11289 for 6 days (counts from 1.74 to 0.00 log CFU/g) and ensured lower weight loss (2.7%) and lipid peroxidation (0.63 mg MDA/kg) of samples compared with the control (3.0%; 1.25 mg MDA/kg). At the same time, coloration of ham samples in terms of luminosity, redness, and yellowness as well as discoloration throughout cold storage was not influenced by BLIS or Nisaplin taken as a control. These results suggest the potential use of P. pentosaceus BLIS as a biopreservative in meat and other food processing industries.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Conservantes de Alimentos/farmacologia , Listeria/efeitos dos fármacos , Pediococcus pentosaceus/metabolismo , Carne de Porco/microbiologia , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Armazenamento de Alimentos , Listeria/crescimento & desenvolvimento , Nisina/farmacologia , Carne de Porco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA