Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 671742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305839

RESUMO

The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S-23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S-23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.

3.
Sci Rep ; 9(1): 11024, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439858

RESUMO

Here we inspect whether microbial life may disperse using dust transported by wind in the Atacama Desert in northern Chile, a well-known Mars analog model. By setting a simple experiment across the hyperarid core of the Atacama we found that a number of viable bacteria and fungi are in fact able to traverse the driest and most UV irradiated desert on Earth unscathed using wind-transported dust, particularly in the later afternoon hours. This finding suggests that microbial life on Mars, extant or past, may have similarly benefited from aeolian transport to move across the planet and find suitable habitats to thrive and evolve.


Assuntos
Bactérias , Poeira , Fungos , Vento , Bactérias/genética , Chile , Clima Desértico , Exobiologia , Fungos/genética , Marte , Modelos Teóricos , Movimento , Oceanos e Mares , Fotoperíodo , RNA Ribossômico/genética , Microbiologia do Solo , Fatores de Tempo , Difração de Raios X
4.
Environ Microbiol Rep ; 7(3): 388-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25545388

RESUMO

The Atacama Desert is the driest and oldest desert on Earth. Eleven years ago, the Yungay region was established as the driest site of this hyperarid desert and also close to the dry limit for life on Earth. Since then, much has been published about the extraordinary characteristics of this site and its pertinence as a Mars analogue model. However, as a result of a more systematic search in the Atacama here, we describe a new site, María Elena South (MES), which is much drier than Yungay. The mean atmospheric relative humidity (RH) at MES was 17.3%, with the RH of its soils remaining at a constant 14% at the depth of 1 m, a value that matches the lowest RH measurements taken by the Mars Science Laboratory at Gale Crater. Remarkably, we found a number of viable bacterial species in the soil profile at MES using a combination of molecular dependent and independent methods, unveiling the presence of life in the driest place on the Atacama Desert reported to date.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Clima Desértico , Microbiologia do Solo , Técnicas Bacteriológicas , Chile , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Biomed Res Int ; 2014: 909312, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147824

RESUMO

The Atacama Desert in Chile is well known for being the driest and oldest desert on Earth. For these same reasons, it is also considered a good analog model of the planet Mars. Only a few decades ago, it was thought that this was a sterile place, but in the past years fascinating adaptations have been reported in the members of the three domains of life: low water availability, high UV radiation, high salinity, and other environmental stresses. However, the biotechnological applications derived from the basic understanding and characterization of these species, with the notable exception of copper bioleaching, are still in its infancy, thus offering an immense potential for future development.


Assuntos
Biotecnologia/métodos , Clima Desértico , Microbiologia do Solo , Animais , Chile , Meio Ambiente , Salinidade
6.
Extremophiles ; 18(1): 61-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141552

RESUMO

The comprehensive study of microorganisms that evolved in the Atacama Desert, the driest and oldest on earth, may help to understand the key role of water for life. In this context, we previously characterized the microenvironment that allows colonization of the underside of quartzes in the Coastal Range of this desert by hypolithic microorganisms (Azua-Bustos et al. Microb Ecol 58:568-581, 2011). Now, we describe the biodiversity composition of these biofilms and the isolation from it of a new cyanobacterial strain. Based on morphologic and phylogenetic analyses, this isolate (AAB1) was classified as a new member of the Gloeocapsopsis genus. Physiological, morphological and molecular responses by isolate AAB1 show that this strain is extremely tolerant to desiccation. Our results also indicate that the isolate biosynthesizes sucrose and trehalose in response to this stressful condition. We identified two candidate genes involved in sucrose synthesis, namely sucrose 6-phosphate synthase and sucrose 6-phosphate phosphatase. Thus, the Gloeocapsopsis isolate AAB1 may represent a suitable model for understanding tolerance to low water availability.


Assuntos
Adaptação Fisiológica , Cianobactérias/isolamento & purificação , Clima Desértico , Dessecação , Microbiologia do Solo , Biofilmes , Chile , Cianobactérias/genética , Cianobactérias/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico/genética , Sacarose/metabolismo , Trealose/biossíntese
7.
Microb Ecol ; 65(2): 325-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23001596

RESUMO

Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites. Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA sequences obtained from these sites showed banding patterns that suggest distinct and complex microbial communities. Analysis of 16S rDNA sequences obtained from UV-tolerant strains isolated from these sites revealed species related to the Bacillus and Pseudomonas genera. Vegetative cells of one of these isolates, Bacillus S3.300-2, showed the highest UV tolerance profile (LD(10) = 318 J m(2)), tenfold higher than a wild-type strain of Escherichia coli. Thus, our results show that the Atacama Desert harbors a noteworthy microbial community that may be considered for future astrobiological-related research in terms of UV tolerance.


Assuntos
Bactérias/isolamento & purificação , Bactérias/efeitos da radiação , Clima Desértico , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Chile , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Exobiologia , RNA Ribossômico 16S/genética , Tolerância a Radiação , Raios Ultravioleta
8.
Front Microbiol ; 3: 426, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23267354

RESUMO

We have recently discovered a variety of unrelated phototrophic microorganisms (two microalgae and one cyanobacteria) in specialized terrestrial habitats at The Coastal Range of the Atacama Desert. Interestingly, morphological and molecular evidence suggest that these three species are all recent colonists that came from aquatic habitats. The first case is Cyanidiales inhabiting coastal caves. Cyanidiales are microalgae that are commonly found in warm acid springs, but have also been recently discovered as cave flora in Italy. The case is Dunaliella biofilms colonizing spider webs in coastal caves; Dunaliella are microalgae typically found in hypersaline habitats. The third case is Chroococcidiopsis, a genus of Cyanobacteria commonly found in deserts around the world that has also been described in warm springs. Thus, we show that the traits found in the closest ancestors of the aforementioned species (which inhabited other unrelated extreme environments) seem to be now useful for the described species in their current subaerial habitats and may likely correspond to cases of exaptations. Altogether, the Coastal Range of the Atacama Desert may be considered as a place where key steps on the colonization of land by phototrophic organisms seem to be being repeated by convergent evolution of extant microalgae and Cyanobacteria.

9.
FEBS Lett ; 586(18): 2939-45, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22819826

RESUMO

The Atacama Desert, located in northern Chile, is the driest and oldest desert on Earth. Research aimed at the understanding of this unique habitat and its diverse microbial ecosystems begun only a few decades ago, mainly driven by NASA's astrobiology program. A milestone in these efforts was a paper published in 2003, when the Atacama was shown to be a proper model of Mars. From then on, studies have been focused to examine every possible niche suitable for microbial life in this extreme environment. Habitats as different as the underside of quartz rocks, fumaroles at the Andes Mountains, the inside of halite evaporates and caves of the Coastal Range, among others, have shown that life has found ingenious ways to adapt to extreme conditions such as low water availability, high salt concentration and intense UV radiation.


Assuntos
Clima , Microbiologia do Solo , Chile
10.
Microb Ecol ; 61(3): 568-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21188376

RESUMO

The Atacama Desert is one of the driest places on Earth, with an arid core highly adverse to the development of hypolithic cyanobacteria. Previous work has shown that when rain levels fall below ~1 mm per year, colonization of suitable quartz stones falls to virtually zero. Here, we report that along the coast in these arid regions, complex associations of cyanobacteria, archaea, and heterotrophic bacteria inhabit the undersides of translucent quartz stones. Colonization rates in these areas, which receive virtually no rain but mainly fog, are significantly higher than those reported inland in the hyperarid zone at the same latitude. Here, hypolithic colonization rates can be up to 80%, with all quartz rocks over 20 g being colonized. This finding strongly suggests that hypolithic microbial communities thriving in the seaward face of the Coastal Range can survive with fog as the main regular source of moisture. A model is advanced where the development of the hypolithic communities under quartz stones relies on a positive feedback between fog availability and the higher thermal conductivity of the quartz rocks, which results in lower daytime temperatures at the quartz-soil interface microenvironment.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Clima Desértico , Umidade , Microbiologia do Solo , Tempo (Meteorologia) , Biodiversidade , Chile , Cianobactérias/classificação , Cianobactérias/genética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fotossíntese , Quartzo , RNA Ribossômico 16S/genética , Chuva , Temperatura , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA