Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504982

RESUMO

Modification of thin-film composite (TFC) nanofiltration (NF) membranes to increase permeability and improve separation performance remains a significant challenge for water scarcity. This study aimed to enhance the permeability and selectivity of two commercial polyamide (PA) NF membranes, NF90 and NF270, by modifying them with carbon nanotubes (CNTs) using microwave (MW)-assisted in-situ growth. The conducting polymer, polypyrrole (Ppy), and a ferrocene catalyst were used to facilitate the growth process. Chemical and morphological analyses confirmed that the surface of both membranes was modified. The NF270-Ppy-CNT membrane was selected for ion rejection testing due to its superior permeability compared to the NF90-Ppy-CNT. The modified NF270 membrane showed a 14% increase in ion rejection while maintaining constant water permeability. The results demonstrated that it is feasible to attach CNTs to a polymeric surface without compromising its functional properties. The Spliegler-Kedem model was employed to model the rejection and permeate flux of NF270-Ppy-CNT and NF270 membranes, which indicated that diffusive transport contributes to the modification to increase NaCl rejection. The present study provides a promising approach for modifying membranes by in-situ CNT growth to improve their performance in water treatment applications, such as desalination.

2.
Biochim Biophys Acta Biomembr ; 1865(3): 184101, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535340

RESUMO

BACKGROUND: The exceptional capacities of aquaporins in terms of water permeation and selectivity have made them an interesting system for membrane applications. Despite the multiple attempts for immobilizing the aquaporins over a porous substrate, there is a lack of studies related to the purification and reconstitution steps, principally associated with the use of detergents in solubilization and destabilization steps. This study analyzed the effect of detergents in Aquaporin Z solubilization, considering the purity and structural homogeneity of the protein. METHODS: The extraction process was optimized by the addition of detergent at the sonication step, which enabled the omission of the ultracentrifugation and resuspension steps. Two detergents, Triton X-100, and octyl-glucoside were also evaluated. Destabilization mediated by detergents was used as reconstitution method. Saturation and solubilization points were defined by detergent concentration and both, liposomes and proteoliposomes, were analyzed by size distribution and permeability assays. Detergent removal with Bio-beads was also analyzed. RESULTS: Octyl glucoside ensures structural stability and homogeneity of Aquaporin Z. However, high concentrations of detergents induce the presence of defects in proteoliposomes. While saturated liposomes create homogeneous and functional structures, solubilized liposomes get affected by a reassembly process, creating vesicle defects with anomalous permeability profiles. CONCLUSIONS: Detergent concentration affects the structural conformation of proteoliposomes in the reconstitution process. GENERAL SIGNIFICANCE: Since the destabilization process is dependent on vesicle, detergent, and buffer composition, optimization of this process should be mandatory for further studies. All these considerations will allow achieving the potential of Aquaporins and any other integral membrane protein in their applications for industrial purposes.


Assuntos
Aquaporinas , Detergentes , Lipossomos/química , Proteínas de Membrana , Octoxinol
3.
Sci Total Environ ; 723: 137809, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213401

RESUMO

Public concern on the groundwater contamination by nitrate has grown significantly in recent years. The objective of this study was to determine the appropriate treatment to reduce the nitrate content in the presence of other ions from groundwater, for which nanofiltration and ion exchange were evaluated. In nanofiltration, the effects of pressure, feed flow, initial composition, and performance were studied, in ion exchange the flow rate, initial composition, and resin regeneration process. Nanofiltration tests were carried out on four different commercial membranes: NF97, NF99, NF99H, and NF90. Among these, all membranes removed chloride but only NF97 and NF90 were able to remove nitrate in compliance with Chilean drinking water standard, showing rejections of 97% and 87%, respectively, in an optimum pressure range of 12-20 bar in which the NF90 produced 3.5 times more permeated water than NF97. For ion exchange tests, Purolite A520E resin was used, which decreased nitrate content to <1 mg/L. Results leading to the optimal flow within the exchange column indicated that residence time must be at least 2.1 min. The higher nitrate concentration in water did not lead to changes in the maximum resin capacity, 47.1 mg NO3-/g resin, but it did decrease the resin breakthrough capacity when initial concentration increased. Optimal regeneration was assigned to a 3% w/V NaCl solution and up-flow mode. Due to the ability to remove both nitrate and chloride, and being able to remove iron if necessary, nanofiltration was chosen as the appropriate treatment.

4.
Biotechnol Rep (Amst) ; 20: e00287, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30386735

RESUMO

Chitin extraction from Allopetrolisthes punctatus, a crab species proliferating in Chile and Peru seashores, was carried out applying preliminary lactic ensilation. For this purpose, Lactobacillus plantarum sp. 47 isolated from Coho salmon was inoculated in crab biomass. Previously, fermentation parameters (carbon source, inoculum concentration and incubation temperature) to obtain peak lactic acid production and bacterial growth were studied. The optimal fermentation conditions were 10% inoculum, 15% sucrose and 85% crab biomass, producing 17 mg lactic acid/ g silage. Extracted and purified chitin, after 60 h fermentation, showed 99.6 and 95.3% demineralization and deproteinization, respectively, using low concentrated acids and bases. As a means of comparison, chitin was also extracted by chemical hydrolysis using high concentrated acids and bases, giving a lower yield and lower quality product.

5.
Environ Technol ; 36(5-8): 890-900, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25253193

RESUMO

This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production.


Assuntos
Clareadores/isolamento & purificação , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Poluição da Água/prevenção & controle , Celulose , Poluentes Ambientais/análise , Peso Molecular , Ultrafiltração , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA