Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zygote ; 25(1): 10-16, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27806737

RESUMO

Sesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure-activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,ß-α',ß'-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.


Assuntos
Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Sesquiterpenos/farmacologia , Animais , Bufo arenarum , Células Cultivadas , Feminino , Lactonas/química , Lactonas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Progesterona/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Guaiano/farmacologia , Relação Estrutura-Atividade
2.
Zygote ; 23(6): 924-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25424172

RESUMO

Mature oocytes are arrested in metaphase II due to the presence of high levels of active maturation promoting factor (MPF). After fertilization, active MPF levels decline abruptly, enabling oocytes to complete meiosis II. One of the first and universal events of oocyte activation is an increase in cytosolic Ca2+ that would be responsible for MPF inactivation. Mature oocytes can also be activated by parthenogenetic activation. The aims of this work are to test the ability of dehydroleucodine (DhL) and its hydrogenated derivative 11,13-dihydro-dehydroleucodine (2H-DhL) to induce chemical activation in amphibian oocytes and to study the participation of calcium in the process. Results indicated that DhL and 2H-DhL induced oocyte activation in a dose-dependent manner. After 90 min of treatment, DhL 36 µM was able to induce 95% activation, while 2H-DhL 36 µM was less active, with only 40% activation. Our results suggest that DhL induced the inhibition of MPF activity, probably by an increase in intracellular Ca2+ concentration. Extracellular Ca2+ would not be significant, although Ca2+ release from intracellular stores is critical. In this sense, IP3Rs and RyRs were involved in the Ca2+ transient induced by lactones. In this species, RyRs appears to be the largest contributor to Ca2+ release in DhL-induced activation. Although more studies are needed on the mechanism of action through which these lactones induce oocyte activation in Rhinella arenarum, the results of this research provide interesting perspectives for the use of these lactones as chemical activators in in vitro fertilization and cloning.


Assuntos
Bufo arenarum , Lactonas/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Sesquiterpenos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Técnicas de Maturação in Vitro de Oócitos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Fator Promotor de Maturação/antagonistas & inibidores , Fator Promotor de Maturação/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Zygote ; 23(3): 406-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24522008

RESUMO

The sesquiterpene lactones (STLs) are a large class of plant secondary metabolites that are generally found in the Asteraceae family and that have high diversity with respect to chemical structure as well as biological activity. STLs have been classified into different groups, such as guaianolides, germacranolides, and melampolides etc., based on their carboxylic skeleton. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under the stimulus of progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. The purpose of this work was to determine whether sesquiterpene lactones from the germacranolide and melampolide groups act as inhibitor agents on the meiosis of amphibian oocytes in vitro. Results for germacranolides indicated that the addition of deoxyelephantopins caused a high degree of inhibition and that minimolide showed a moderate inhibitory effect, whereas glaucolide A was inactive. Furthermore, the addition of melampolides (uvedalin, enhydrin, polymatin A and polymatin B) showed inhibitory effects. For enhydrin and uvedalin, inhibitory effects were observed at the higher concentrations assayed. The results of this study suggest that the inhibitory activity of the tested sesquiterpene lactones on the meiosis of Rhinella arenarum oocytes is not dependent on the group to which they belong, i.e. not on the carboxylic skeleton, but probably due to the arrangement and type of function groups present in the molecules. All assayed lactones in the germacranolide group showed low toxicity. In contrast, important differences in toxicity were observed for lactones from the melampolide group: enhydrin and uvedalin showed low toxicity, but polymatin A and B were highly toxic.


Assuntos
Bufo arenarum , Técnicas de Maturação in Vitro de Oócitos/métodos , Lactonas/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Sesquiterpenos/farmacologia , Animais , Feminino , Progesterona/farmacologia , Sesquiterpenos de Germacrano/farmacologia
4.
Zygote ; 19(2): 171-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20880424

RESUMO

Calcium is considered the most important second messenger at fertilization. Transient release from intracellular stores is modulated through both agonist-gated channels, IP3Rs and RyRs, which can be found individually or together depending on the oocyte species. Using the four commonly used compounds (thimerosal, caffeine, heparin and ruthenium red), we investigated the existence and interdependence of both IP3Rs and RyRs in mature Bufo arenarum oocytes. We found that caffeine, a well known specific RyRs agonist, was able to trigger oocyte activation in a dose-dependent manner. Microinjection of 10 mM caffeine showed 100% of oocytes exhibiting characteristic morphological criteria of egg activation. Ruthenium red, the specific RyR blocker, was able to inhibit oocyte activation induced either by sperm or caffeine. Our present findings provide the first reported evidence of the existence of RyR in frogs. We further explored the relationship between IP3Rs and RyRs in B. arenarum oocytes by exposing them to the agonists of one class after injecting a blocker of the other class of receptor. We found that thimerosal overcame the inhibitory effect of RyR on oocyte activation, indicating that IP3Rs function as independent receptors. In contrast, previous injection of heparin delayed caffeine-induced calcium release, revealing a relative dependence of RyRs on functional IP3Rs, probably through a CICR mechanism. Both receptors play a role in Ca²+ release mechanisms although their relative contribution to the activation process is unclear.


Assuntos
Inositol 1,4,5-Trifosfato/metabolismo , Oócitos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Bufo arenarum , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Oócitos/efeitos dos fármacos , Rutênio Vermelho/farmacologia , Rianodina/farmacologia , Interações Espermatozoide-Óvulo , Timerosal/farmacologia
5.
Zygote ; 19(2): 181-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20880425

RESUMO

The objectives of the present paper were to study the involvement and possible interactions of both cAMP-PKA and protein phosphatases in Bufo arenarum oocyte maturation and to determine if these pathways are independent or not of the MAP kinase (MAPK) cascade. Our results indicated that the inhibition of PKA by treatment with H-89, an inhibitor of the catalytic subunit of PKA, was capable of inducing GVBD in a dose-dependent manner by a pathway in which Cdc25 phosphatase but not the MAPK cascade is involved. The injection of 50 nl of H-89 10 µM produced GVBD percentages similar to those obtained with treatment with progesterone. In addition, the assays with okadaic acid (OA), a PP2A inhibitor, significantly enhanced the percentage of oocytes that resumed meiosis by a signal transducing pathway in which the activation of the MEK-MAPK pathway is necessary, but in which Cdc25 phosphatase was not involved. Treatment with H-89, was able to overcome the inhibitory effect of PKA on GVBD; however, the inhibition of Cdc25 activity with NaVO3 was able to overcome the induction of GVBD by H-89. Although the connections between PKA and other signalling molecules that regulate oocytes maturation are still unclear, our results suggest that phosphatase Cdc25 may be the direct substrate of PKA. In Xenopus oocytes it was proposed that PP2A, a major Ser/Thr phosphatase present, is a negative regulator of Cdc2 activation. However, in Bufo arenarum oocytes, inhibition of Cdc25 with NaVO3 did not inhibit OA-induced maturation, suggesting that the target of PP2A was not the Cdc25 phosphatase. MAPK activation has been reported to be essential in Xenopus oocytes GVBD. In B. arenarum oocytes we demonstrated that the inhibition of MAPK by PD 98059 prevented the activation of MPF induced by OA, suggesting that the activation of the MAPK cascade produced an inhibition of Myt1 and, in consequence, the activation of MPF without participation of the Cdc25 phosphatase. Our results suggest that in incompetent oocytes of B. arenarum two signal transduction pathways may be involved in the control of MPF activation: (1) the inhibition of phosphatase 2A that through the MEK-MAPK pathway regulates the activity of the Myt1; and (2) the inhibition of AMPc-PKA, which affects the activity of the Cdc25 phosphatase.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fator Promotor de Maturação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oócitos/enzimologia , Proteína Fosfatase 2/metabolismo , Animais , Bufo arenarum , Fosfatases cdc25/metabolismo
6.
Zygote ; 18(1): 41-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19664309

RESUMO

Dehydroleucodine (DhL), a sesquiterpenic lactone, was isolated and purified from aerial parts of Artemisia douglasiana Besser, a medicinal herb used in Argentina. DhL is an alpha-methylene butyro-gamma-lactone ring connected to a seven-membered ring fused to an exocyclic alpha,beta-unsaturated cyclopentenone ring. It has been previously shown that DhL selectively induces a dose-dependent transient arrest in G2 of both meristematic cells and vascular smooth muscle cells. Treatment with DhL induces an inhibition of spontaneous and progesterone-induced maturation in a dose-dependent manner in Bufo arenarum fully grown oocytes arrested at G2, at the beginning of meiosis I. However, the nature of the mechanisms involved in the process is still unknown. The aim of this work was to analyse whether DhL's alpha-methylene-gamma-lactone function is responsible for the inhibition effect on meiosis reinitiation of Bufo arenarum oocytes as well as some of the transduction pathways that could be involved in this effect using a derivative of DhL inactivated for alpha-methylenelactone, the 11,13-dihydro-dehydroleucodine (2H-DhL). The use of 2H-DhL in the maturation promoting factor (MPF) amplification experiments by injection of both cytoplasm with active MPF and of germinal vesicle content showed results similar to the ones obtained with DhL, suggesting that the hydrogenated derivative would act in a similar way to DhL. Pretreatment with DhL or 2H-DhL did not affect the percentage of germinal vesicle breakdown (GVBD) induced by H89, a protein kinase A (PKA) inhibitor, which suggests that these lactones would act on another step of the signalling pathway that induces MPF activation. The fact that both DhL and 2H-Dhl inhibit GVBD induced by okadaic acid microinjection suggests that they could act on the activity of the Myt1 kinase. This idea is supported by the experiments of injection of GV contents in which an inhibitory effect of these lactones on GVBD was also observed. Our results indicate that the inhibitory effect on meiosis progression of DhL does not depend only on the activity of the alpha-methylenelactone function, as its hydrogenated derivative, 2H-DhL, in which this function has been inactivated, causes similar effects on amphibian oocytes. However, 2H-DhL was less active than DhL as higher doses were required to obtain a significant inhibition. On the other hand, the analysis of the participation of certain mediators in some of the signalling pathways leading to MPF activation suggests that the Myt1 kinase could be a target of these lactones, while cdc25 phosphatase would not be affected. Besides, the PKA inhibition assays indicate that these lactones would act earlier in the signalling pathways.


Assuntos
Lactonas/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Bufo arenarum , Diferenciação Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Isoquinolinas/farmacologia , Lactonas/química , Fator Promotor de Maturação/metabolismo , Estrutura Molecular , Oócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/metabolismo , Sesquiterpenos/química , Sulfonamidas/farmacologia
7.
Zygote ; 16(4): 303-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18616844

RESUMO

In the fertilization of most animals, egg activation is accompanied by an increase in cytoplasmatic Ca2+; however, the mechanism through which the fertilizing sperm induce this phenomenon is still controversial. An increase in intracellular free Ca2+ is required to trigger egg activation events, a process that includes cortical granule exocytosis, resumption and completion of meiosis and DNA replication, and culminates in the first mitotic cleavage. In this work, we investigated the effect of microinjection and incubation of different fractions of homologous sperm extract on the activation of Bufo arenarum oocytes matured in vitro. Two heat treatment-sensitive fractions obtained by chromatography were able to induce oocyte activation. The sperm fraction, which contained a 24 kDa protein, induced 90% activation when it was microinjected into the oocytes. Whilst the sperm fraction, which contained a 36 kDa protein, was able to induce about 70% activation only when it was applied on the oocyte surface.


Assuntos
Fertilização/fisiologia , Oócitos/fisiologia , Espermatozoides/fisiologia , Extratos de Tecidos/farmacologia , Animais , Bufo arenarum , Cromatografia em Gel , Embrião não Mamífero/fisiologia , Feminino , Masculino , Microinjeções , Oócitos/efeitos dos fármacos , Maturidade Sexual , Extratos de Tecidos/administração & dosagem , Extratos de Tecidos/isolamento & purificação
8.
Zygote ; 16(2): 135-44, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18405434

RESUMO

Amphibian oocytes meiotic arrest is released under the stimulus of progesterone; this hormone interacts with the oocyte surface and starts a cascade of events leading to the activation of a cytoplasmic maturation promoting factor (MPF) that induces germinal vesicle breakdown (GVBD), chromosome condensation and extrusion of the first polar body. The aim of this work was to determine whether the activation of a GABAA receptor is able to induce GVBD in fully grown denuded oocytes of Bufo arenarum and to analyse its possible participation in progesterone-induced maturation. We also evaluated the role of purines and phospholipids in the maturation process induced by a GABAA receptor agonist such as muscimol. Our results indicated that the activation of the GABAA receptor by muscimol induces maturation in a dose- and time-dependent manner and that this activation is a genuine maturation that enables oocytes to form pronuclei. Assays with a receptor antagonist, picrotoxine, showed that the maturation induced by muscimol was inhibited. Treatment with picrotoxine, however, shows that the participation of GABAA receptor in progesterone-induced maturation is not significant. In addition, our results indicate that high intracellular levels of purines obtained by the use of db-AMPc and theophylline or the inhibition of the phosphatidylinositol 4,5-bisphosphate (PIP2 hydrolysis by neomycin and PIP2 turn over by LiCl, respectively, inhibited the maturation induced by muscimol. Treatment with H-7 indicated, however, that PKC activation is not necessary for GVBD induced by the GABAA receptor agonist. Results suggest that the transduction pathway used by the GABAA receptor to induce maturation is different from those used by progesterone.


Assuntos
Bufo arenarum/fisiologia , Oócitos/fisiologia , Oogênese , Progesterona/farmacologia , Receptores de GABA-A/metabolismo , Animais , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Muscimol/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Picrotoxina/farmacologia , Progestinas/farmacologia
9.
Zygote ; 15(2): 183-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462111

RESUMO

In amphibian oocytes meiosis, the transition from G2 to M phase is regulated by the maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34/cdc2 and cyclin B. In immature oocytes there is an inactive complex (pre-MPF), in which cdc2 is phosphorylated on both Thr-161 and Thr-14/Tyr-15 residues. The dephosphorylation of Thr-14/Tyr-15 is necessary for the start of MPF activation and it is induced by the activation of cdc25 phosphatase. Late, to complete the activation, a small amount of active MPF induces an auto-amplification loop of MPF stimulation (MPF amplification). Dehydroleucodine (DhL) is a sesquiterpenic lactone that inhibits mammalian cell proliferation in G2. We asked whether DhL interferes with MPF activation. For this question, the effect of DhL (up to 30 microM) on the resumption of meiosis was evaluated, and visualized by germinal vesicle break down (GVBD), of Bufo arenarum oocytes induced in vitro by either: (i) removing follicle cells; (ii) progesterone stimulation; (iii) VG-content injection; or (iv) injection of mature cytoplasm. The results show that DhL induced GVBD inhibition, in a dose-dependent manner, in spontaneous and progesterone-induced oocyte maturation. Nevertheless, DhL at the doses assayed had no effect on GVBD induced by mature cytoplasm injection, but exerted an inhibitory effect on GVBD induced by GV content. On the basis of these results, we interpreted that DhL does not inhibit MPF amplification and that the target of DhL is any event in the early stages of the cdc25 activation cascade.


Assuntos
Bufo arenarum/fisiologia , Lactonas/farmacologia , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Sesquiterpenos/farmacologia , Animais , Células Cultivadas , Citoplasma/metabolismo , Feminino , Fator Promotor de Maturação/metabolismo , Meiose/fisiologia , Oócitos/citologia , Oogênese/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Progesterona/farmacologia , Progestinas/farmacologia , Fosfatases cdc25
10.
Zygote ; 15(1): 65-80, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17391547

RESUMO

It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as DAG and IP(3). The uncoupling of the gap junctions with 1-octanol or halothane fails to induce maturation in follicles from the non-reproductive period, whose oocytes are incapable of maturing spontaneously. However, if the treatment is performed during the reproductive period, with oocytes capable of undergoing spontaneous maturation, meiosis resumption occurs in high percentages, similar to those obtained by manual defolliculation. Interestingly, results show that LH is capable of inducing GVBD in both incapable oocytes and in oocytes capable of maturing spontaneously as long as follicle cells are present, which would imply the need for a communication pathway between the oocyte and the follicle cells. This possibility was analysed by combining LH treatment with uncoupling agents such as 1-octanol or halothane. Results show that maturation induction with LH requires a cell-cell coupling, as the uncoupling of the gap junctions decreases GVBD percentages. Experiments with LH in the presence of heparin, BAPTA/AM and theophylline suggest that the hormone could induce GVBD by means of the passage of IP(3) or Ca(2+) through the gap junctions, which would increase the Ca(2+) level in the oocyte cytoplasm and activate phosphodiesterase (PDE), thus contributing to the decrease in cAMP levels and allowing meiosis resumption.


Assuntos
Bufo arenarum/crescimento & desenvolvimento , Hormônio Luteinizante/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Animais , Bufo arenarum/anatomia & histologia , Bufo arenarum/fisiologia , Cálcio/metabolismo , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Fosfolipídeos/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA