Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Med Microbiol ; 73(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145374

RESUMO

Introduction. Sporotrichosis is a subcutaneous infection caused by dimorphic Sporothrix species embedded in the clinical clade. Fungi have virulence factors, such as biofilm and melanin production, which contribute to their survival and are related to the increase in the number of cases of therapeutic failure, making it necessary to search for new options.Gap statement. Proton pump inhibitors (PPIs) have already been shown to inhibit the growth and melanogenesis of other fungi.Aim. Therefore, this study aimed to evaluate the effect of the PPIs omeprazole (OMP), rabeprazole (RBP), esomeprazole, pantoprazole and lansoprazole on the susceptibility and melanogenesis of Sporothrix species, and their interactions with itraconazole, terbinafine and amphotericin B.Methodology. The antifungal activity of PPIs was evaluated using the microdilution method, and the combination of PPIs with itraconazole, terbinafine and amphotericin B was assessed using the checkerboard method. The assessment of melanogenesis inhibition was assessed using grey scale.Results. The OMP and RBP showed significant MIC results ranging from 32 to 256 µg ml-1 and 32 to 128 µg ml-1, respectively. Biofilms were sensitive, with a significant reduction (P<0.05) in metabolic activity of 52% for OMP and 50% for RBP at a concentration of 512 µg ml-1 and of biomass by 53% for OMP and 51% for RBP at concentrations of 512 µg ml-1. As for the inhibition of melanogenesis, only OMP showed inhibition, with a 54% reduction.Conclusion. It concludes that the PPIs OMP and RBP have antifungal activity in vitro against planktonic cells and biofilms of Sporothrix species and that, in addition, OMP can inhibit the melanization process in Sporothrix species.


Assuntos
Anfotericina B , Antifúngicos , Melanogênese , Inibidores da Bomba de Prótons , Sporothrix , Esporotricose , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Itraconazol/farmacologia , Melaninas/biossíntese , Melaninas/metabolismo , Melanogênese/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico , Sporothrix/efeitos dos fármacos , Sporothrix/metabolismo , Esporotricose/tratamento farmacológico , Esporotricose/microbiologia , Terbinafina/farmacologia
2.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530134

RESUMO

Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.Results. Anthraquinone-antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.


Assuntos
Antracenos , Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans , Itraconazol , Virulência , Antraquinonas/farmacologia , Biofilmes
3.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132801

RESUMO

Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.

4.
J Appl Oral Sci ; 31: e20230146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729259

RESUMO

OBJECTIVE: Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY: Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS: CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION: This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.


Assuntos
Quitosana , Cárie Dentária , Óleos Voláteis , Pré-Escolar , Humanos , Óleos Voláteis/farmacologia , Candida albicans , Streptococcus mutans , Quitosana/farmacologia , Cárie Dentária/prevenção & controle , Biofilmes
5.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37553154

RESUMO

The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.


Fungal infections are neglected diseases that affect more than a billion people worldwide. Some histone deacetylase inhibitors can act against fungal cells. Our data reveal that HDACi LDT536 and LDT537 have potential antibiofilm and antifungal activities.

6.
J Microbiol Methods ; 208: 106721, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031894

RESUMO

Ex vivo experiments have been performed aiming at mimicking in vivo environments. The main aim of this research was to standardize in vitro dual-species biofilm formation by Staphylococcus pseudintermedius and Malassezia pachydermatis as a strategy to establish an ex vivo biofilm model. Initially, the in vitro formation of biofilms in co-culture was established, using YPD medium, inoculum turbidity of 0.5 on the McFarland scale and maturation periods of 96 h for M. pachydermatis and 48 h for S. pseudintermedius. Subsequently, biofilms were formed on porcine skin using the same conditions, under which a greater number of cells/ml was observed in in vitro dual-species than in in vitro mono-species biofilms. Furthermore, ex vivo biofilm images demonstrated the formation of a highly structured biofilm with the presence of cocci and yeasts surrounded by the matrix. Thus, these conditions optimized the growth of both microorganisms within biofilms in vitro and ex vivo.


Assuntos
Malassezia , Staphylococcus , Animais , Suínos , Biofilmes , Padrões de Referência
7.
J. appl. oral sci ; 31: e20230146, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514408

RESUMO

Abstract Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. Objective This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. Methodology Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. Results CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. Conclusion This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.

8.
Biofouling ; 38(3): 286-297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35450473

RESUMO

This study aimed to evaluate the effect of proteinase K on mature biofilms of dermatophytes, by assays of metabolic activity and biomass. In addition, the proteinase K-terbinafine and proteinase K-griseofulvin interactions against these biofilms were investigated by the checkerboard assay and scanning electron and confocal microscopy. The biofilms exposed to 32 µg ml-1 of proteinase K had lower metabolic activity and biomass, by 39% and 38%, respectively. Drug interactions were synergistic, with proteinase K reducing the minimum inhibitory concentration of antifungals against dermatophyte biofilms at a concentration of 32 µg ml-1 combined with 128-256 µg ml-1 of terbinafine and griseofulvin. Microscopic images showed a reduction in biofilms exposed to proteinase K, proteinase K-terbinafine and proteinase K-griseofulvin combinations. These findings demonstrate that proteinase K has activity against biofilms of dermatophytes, and the interactions of proteinase K with terbinafine and griseofulvin improve the activity of drugs against mature dermatophyte biofilms.


Assuntos
Antifúngicos , Arthrodermataceae , Antifúngicos/farmacologia , Biofilmes , Endopeptidase K/farmacologia , Griseofulvina/farmacologia , Testes de Sensibilidade Microbiana , Terbinafina/farmacologia
9.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303412

RESUMO

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 µg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Herbicidas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Levodopa/metabolismo , Levodopa/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Testes de Sensibilidade Microbiana , Paraquat/metabolismo , Paraquat/farmacologia
10.
Biofouling ; 37(8): 809-817, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34634964

RESUMO

This study aimed to evaluate the in vitro effect of aloe emodin, barbaloin and chrysophanol on growing and mature biofilms of Cryptococcus neoformans sensu stricto. The compounds were added at the moment of inducing biofilm growth or after growth for 72 h to evaluate their effects on growing and mature biofilms, respectively. Then, biofilm biomass was evaluated by crystal violet staining and metabolic activity by the XTT reduction assay. Morphological alterations were also evaluated by laser scanning confocal microscopy. Aloe emodin and barbaloin affected growing biofilms and disrupted mature biofilms, reducing metabolic activity by > 60% and biomass by > 70%. Chrysophanol only inhibited mature biofilms, but to a lesser extent. In conclusion, anthraquinones, especially aloe emodin and barbaloin, show a relevant effect against growing and mature biofilms of C. neoformans sensu stricto.


Assuntos
Aloe , Cryptococcus neoformans , Emodina , Antraquinonas/farmacologia , Biofilmes , Emodina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA