Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28449, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689961

RESUMO

Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.

2.
Genomics ; 114(6): 110517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306958

RESUMO

Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium­calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.


Assuntos
Agave , Agave/genética , Brasil , Aspergillus/genética
3.
J Fungi (Basel) ; 8(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448604

RESUMO

The rubber tree, Hevea brasiliensis, is a neotropical Amazonian species. Despite its high economic value and fungi associated with native individuals, in its original area in Brazil, it has been scarcely investigated and only using culture-dependent methods. Herein, we integrated in silico approaches with novel field/experimental approaches and a case study of shotgun metagenomics and small RNA metatranscriptomics of an adult individual. Scientific literature, host fungus, and DNA databases are biased to fungal taxa, and are mainly related to rubber tree diseases and in non-native ecosystems. Metabarcoding retrieved specific phyllospheric core fungal communities of all individuals, adults, plantlets, and leaves of the same plant, unravelling hierarchical structured core mycobiomes. Basidiomycotan yeast-like fungi that display the potential to produce antifungal compounds and a complex of non-invasive ectophytic parasites (Sooty Blotch and Flyspeck fungi) co-occurred in all samples, encompassing the strictest core mycobiome. The case study of the same adult tree (previously studied using culture-dependent approach) analyzed by amplicon, shotgun metagenomics, and small RNA transcriptomics revealed a high relative abundance of insect parasite-pathogens, anaerobic fungi and a high expression of Trichoderma (a fungal genus long reported as dominant in healthy wild rubber trees), respectively. Altogether, our study unravels new and intriguing information/hypotheses of the foliar mycobiome of native H. brasiliensis, which may also occur in other native Amazonian trees.

4.
J Fungi (Basel) ; 8(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205897

RESUMO

Trametes villosa is a wood-decaying fungus with great potential to be used in the bioconversion of agro-industrial residues and to obtain high-value-added products, such as biofuels. Nonetheless, the lack of high-quality genomic data hampers studies investigating genetic mechanisms and metabolic pathways in T. villosa, hindering its application in industry. Herein, applying a hybrid assembly pipeline using short reads (Illumina HiSeq) and long reads (Oxford Nanopore MinION), we obtained a high-quality genome for the T. villosa CCMB561 and investigated its genetic potential for lignocellulose breakdown. The new genome possesses 143 contigs, N50 of 1,009,271 bp, a total length of 46,748,415 bp, 14,540 protein-coding genes, 22 secondary metabolite gene clusters, and 426 genes encoding Carbohydrate-Active enzymes. Our CAZome annotation and comparative genomic analyses of nine Trametes spp. genomes revealed T. villosa CCMB561 as the species with the highest number of genes encoding lignin-modifying enzymes and a wide array of genes encoding proteins for the breakdown of cellulose, hemicellulose, and pectin. These results bring to light the potential of this isolate to be applied in the bioconversion of lignocellulose and will support future studies on the expression, regulation, and evolution of genes, proteins, and metabolic pathways regarding the bioconversion of lignocellulosic residues.

5.
Mitochondrion ; 58: 1-13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582235

RESUMO

The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.


Assuntos
Basidiomycota/genética , Genes Fúngicos , Genoma Mitocondrial , Polyporaceae/genética , Códon , DNA Mitocondrial/genética , Íntrons , Fases de Leitura Aberta
6.
PeerJ ; 8: e10487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344092

RESUMO

The true myrtle, Myrtus communis, is a small perennial evergreen tree that occurs in Europe, Africa, and Asia with a circum-Mediterranean geographic distribution. Unfortunately, the Mediterranean Forests, where M. communis occurs, are critically endangered and are currently restricted to small fragmented areas in protected conservation units. In the present work, we performed, for the first time, a metabarcoding study on the spatial variation of fungal community structure in the foliar endophytome of this endemic plant of the Mediterranean biome, using bipartite network analysis as a model. The local bipartite network of Myrtus communis individuals and their foliar endophytic fungi is very low connected, with low nestedness, and moderately high specialization and modularity. Similar network patterns were also retrieved in both culture-dependent and amplicon metagenomics of foliar endophytes in distinct arboreal hosts in varied biomes. Furthermore, the majority of putative fungal endophytes species were basidiomycete woody saprotrophs of the orders Polyporales, Agaricales, and Hymenochaetales. Altogether, these findings suggest a possible adaptation of these wood-decaying fungi to cope with moisture limitation and spatial scarcity of their primary substrate (dead wood), which are totally consistent with the predictions of the viaphytism hypothesis that wood-decomposing fungi inhabit the internal leaf tissue of forest trees in order to enhance dispersal to substrates on the forest floor, by using leaves as vectors and as refugia, during periods of environmental stress.

7.
Front Microbiol ; 11: 765, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411111

RESUMO

The order Hypocreales (Ascomycota) is composed of ubiquitous and ecologically diverse fungi such as saprobes, biotrophs, and pathogens. Despite their phylogenetic relationship, these species exhibit high variability in biomolecules production, lifestyle, and fitness. The mitochondria play an important role in the fungal biology, providing energy to the cells and regulating diverse processes, such as immune response. In spite of its importance, the mechanisms that shape fungal mitogenomes are still poorly understood. Herein, we investigated the variability and evolution of mitogenomes and its relationship with the divergence time using the order Hypocreales as a study model. We sequenced and annotated for the first time Trichoderma harzianum mitochondrial genome (mtDNA), which was compared to other 34 mtDNAs species that were publicly available. Comparative analysis revealed a substantial structural and size variation on non-coding mtDNA regions, despite the conservation of copy number, length, and structure of protein-coding elements. Interestingly, we observed a highly significant correlation between mitogenome length, and the number and size of non-coding sequences in mitochondrial genome. Among the non-coding elements, group I and II introns and homing endonucleases genes (HEGs) were the main contributors to discrepancies in mitogenomes structure and length. Several intronic sequences displayed sequence similarity among species, and some of them are conserved even at gene position, and were present in the majority of mitogenomes, indicating its origin in a common ancestor. On the other hand, we also identified species-specific introns that advocate for the origin by different mechanisms. Investigation of mitochondrial gene transfer to the nuclear genome revealed that nuclear copies of the nad5 are the most frequent while atp8, atp9, and cox3 could not be identified in any of the nuclear genomes analyzed. Moreover, we also estimated the divergence time of each species and investigated its relationship with coding and non-coding elements as well as with the length of mitogenomes. Altogether, our results demonstrated that introns and HEGs are key elements on mitogenome shaping and its presence on fast-evolving mtDNAs could be mostly explained by its divergence time, although the intron sharing profile suggests the involvement of other mechanisms on the mitochondrial genome evolution, such as horizontal transference.

8.
Sci Rep ; 9(1): 12685, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481728

RESUMO

Many aspects of the dynamics of tropical fungal endophyte communities are poorly known, including the influence of host taxonomy, host life stage, host defence, and host geographical distance on community assembly and composition. Recent fungal endophyte research has focused on Hevea brasiliensis due to its global importance as the main source of natural rubber. However, almost no data exist on the fungal community harboured within other Hevea species or its sister genus Micrandra. In this study, we expanded sampling to include four additional Hevea spp. and two Micrandra spp., as well as two host developmental stages. Through culture-dependent and -independent (metagenomic) approaches, a total of 381 seedlings and 144 adults distributed across three remote areas within the Peruvian Amazon were sampled. Results from both sampling methodologies indicate that host developmental stage had a greater influence in community assemblage than host taxonomy or locality. Based on FunGuild ecological guild assignments, saprotrophic and mycotrophic endophytes were more frequent in adults, while plant pathogens were dominant in seedlings. Trichoderma was the most abundant genus recovered from adult trees while Diaporthe prevailed in seedlings. Potential explanations for that disparity of abundance are discussed in relation to plant physiological traits and community ecology hypotheses.


Assuntos
Fungos/isolamento & purificação , Hevea/microbiologia , Micobioma , Biodiversidade , Brasil , Hibridização Genômica Comparativa , DNA Fúngico/química , DNA Fúngico/metabolismo , Fungos/genética , Hevea/crescimento & desenvolvimento , Plântula/microbiologia , Análise de Sequência de DNA
9.
J Proteomics ; 203: 103390, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129267

RESUMO

Basidiomycotan fungi play significant roles in the biogeochemical cycle of carbon as wood decomposers and are used in the food industry for mushroom production and in biotechnology for the production of diverse bioactive compounds and bioremediation. The correct identification of basidiomycotan isolates is crucial for understanding their biology and being able to expand their applications. Currently, the identification of these organisms is performed by analyzing morphological and genomic characteristics, primarily those based on DNA biomarkers. Despite their efficiency, such methods require considerable expertise and are both time-consuming and error-prone (multistep workflow). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged in the last decade as an accurate, fast, and powerful alternative for the identification of microorganisms. MALDI-TOF MS has been widely applied for the identification and taxonomical characterization of both bacteria and ascomycotan fungi from clinical origins. However, species of Basidiomycota have been poorly evaluated using this method. In the present study, we assessed the performance of MALDI-TOF MS using basidiomycotan isolates of two distinct taxonomical families: Polyporaceae and Hymenochaetaceae. Using a simple protocol, which eliminates the protein extraction step, we obtained high-quality mass spectra data and demonstrated that this method is efficient for the discrimination of isolates at the species level. SIGNIFICANCE: In this study, the MALDI-TOF mass spectrometry was employed to test its accuracy on the recognition of fungal species with high biotechnological and environmental interest. Using a simple and fast protocol, we obtained high-quality mass-spectra (protein fingerprinting) and proved that MALDI-TOF MS is sufficiently robust to the identification at species level and to evaluate the relationships among the isolates of the polyporoid and hymenochaetoid clades (Basidiomycota).


Assuntos
Basidiomycota/isolamento & purificação , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Classificação/métodos , Fungos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Virol J ; 15(1): 184, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477549

RESUMO

BACKGROUND: Hevea brasiliensis is an important commercial crop due to the high quality of the latex it produces; however, little is known about viral infections in this plant. The only virus described to infect H. brasiliensis until now is a Carlavirus, which was described more than 30 years ago. Virus-derived small interfering RNA (vsiRNAs) are the product of the plant's antiviral defense triggered by dsRNA viral intermediates generated, during the replication cycle. These vsiRNAs are complementar to viral genomes and have been widely used to identify and characterize viruses in plants. METHODS: In the present study, we investigated the virome of leaf and sapwood samples from native H. brasiliensis trees collected in two geographic areas in the Brazilian Amazon. Small RNA (sRNA) deep sequencing and bioinformatic tools were used to assembly, identify and characterize viral contigs. Subsequently, PCR amplification techniques were performed to experimentally verify the presence of the viral sequences. Finally, the phylogenetic relationship of the putative new virus with related viral genomes was analyzed. RESULTS: Our strategy allowed the identification of 32 contigs with high similarity to viral reference genomes, from which 23 exhibited homology to viruses of the Tymoviridae family. The reads showed a predominant size distribution at 21 nt derived from both strands, which was consistent with the vsiRNAs profile. The presence and genome position of the viral contigs were experimentally confirmed using droplet digital PCR amplifications. A 1913 aa long fragment was obtained and used to infer the phylogenetic relationship of the putative new virus, which indicated that it is taxonomically related to the Grapevine fleck virus, genus Maculavirus. The putative new virus was named Hevea brasiliensis virus (HBrV) in reference to its host. CONCLUSION: The methodological strategy applied here proved to be efficient in detecting and confirming the presence of new viral sequences on a 'very difficult to manage' sample. This is the second time that viral sequences, that could be ascribed as a putative novel virus, associated to the rubber tree has been identified.


Assuntos
Hevea/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Interferente Pequeno/genética , Perfilação da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase , RNA Viral/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA