Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 712437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447311

RESUMO

The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (CaV2.2). Recently, the liver-expressed antimicrobial peptide 2 (LEAP2) was recognized as a novel GHSR ligand, but the mechanism of action of LEAP2 on GHSR is not well understood. Here, we investigated the role of LEAP2 on the canonical and non-canonical modes of action of GHSR on CaV2.2 function. Using a heterologous expression system and patch-clamp recordings, we found that LEAP2 impairs the reduction of CaV2.2 currents induced by ghrelin-evoked and constitutive GHSR activities, acting as a GHSR antagonist and inverse agonist, respectively. We also found that LEAP2 prevents GHSR from modulating the effects of D2R signaling on CaV2.2 currents, and that the GHSR-binding N-terminal region LEAP2 underlies these effects. Using purified labeled receptors assembled into lipid nanodiscs and Forster Resonance Energy Transfer (FRET) assessments, we found that the N-terminal region of LEAP2 stabilizes an inactive conformation of GHSR that is dissociated from Gq protein and, consequently, reverses the effect of GHSR on D2R-dependent Gi activation. Thus, our results provide critical molecular insights into the mechanism mediating LEAP2 modulation of GHSR.

2.
FEBS J ; 288(24): 7213-7229, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460513

RESUMO

The growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand. The existence of two ligands with contrary actions indicates that GHSR activity can be tightly regulated and that the receptor displays the capability to integrate such opposing inputs in order to provide a balanced intracellular signal. This article provides a summary of the current understanding of the biology of ghrelin, LEAP2 and GHSR and discusses the reconceptualization of the cellular and physiological implications of the ligand-regulated GHSR signaling, based on the latest findings.


Assuntos
Receptores de Grelina/metabolismo , Animais , Humanos , Transdução de Sinais
3.
Mol Cell Endocrinol ; 498: 110573, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499133

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) was recently recognized as an endogenous ligand for the growth hormone secretagogue receptor (GHSR), which also is a receptor for the hormone ghrelin. LEAP2 blocks ghrelin-induced activation of GHSR and inhibits GHSR constitutive activity. Since fluorescence-based imaging and pharmacological analyses to investigate the biology of GHSR require reliable probes, we developed a novel fluorescent GHSR ligand based on the N-terminal LEAP2 sequence, hereafter named F-LEAP2. In vitro, F-LEAP2 displayed binding affinity and inverse agonism to GHSR similar to LEAP2. In a heterologous expression system, F-LEAP2 labeling was specifically observed in the surface of GHSR-expressing cells, in contrast to fluorescent ghrelin labeling that was mainly observed inside the GHSR-expressing cells. In mice, centrally-injected F-LEAP2 reduced ghrelin-induced food intake, in a similar fashion to LEAP2, and specifically labeled cells in GHSR-expressing brain areas. Thus, F-LEAP2 represents a valuable tool to study the biology of GHSR in vitro and in vivo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Encéfalo/metabolismo , Corantes Fluorescentes/química , Grelina/metabolismo , Rim/metabolismo , Animais , Células Cultivadas , Ingestão de Alimentos , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA