Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 19(1): 104, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843724

RESUMO

BACKGROUND: Silicosis is an occupational disease that affects workers who inhale silica particles, leading to extensive lung fibrosis and ultimately causing respiratory failure. Mesenchymal stromal cells (MSCs) have been shown to exert therapeutic effects in lung diseases and represent an alternative treatment for silicosis. Recently, it has been suggested that similar effects can be achieved by the therapeutic use of extracellular vesicles (EVs) obtained from MSCs. The aim of this study was to investigate the effects of adipose-tissue-derived MSCs (AD-MSCs) or their EVs in a model of silicosis. METHODS: Silicosis was induced by intratracheal instillation of silica in C57BL/6 mice. After the onset of disease, animals received saline, AD-MSCs, or EVs, intratracheally. RESULTS: At day 30, AD-MSCs and EVs led to a reduction in collagen fiber content, size of granuloma, and in the number of macrophages inside granuloma and in the alveolar septa. In addition, the expression levels of interleukin 1ß and transforming growth factor beta in the lungs were decreased. Higher dose of EVs also reduced lung static elastance when compared with the untreated silicosis group. CONCLUSIONS: Both AD-MSCs and EVs, locally delivered, ameliorated fibrosis and inflammation, but dose-enhanced EVs yielded better therapeutic outcomes in this model of silicosis.


Assuntos
Tecido Adiposo/transplante , Modelos Animais de Doenças , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Dióxido de Silício/toxicidade , Silicose/terapia , Tecido Adiposo/citologia , Animais , Feminino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Silicose/patologia , Resultado do Tratamento
2.
Stem Cells Transl Med ; 6(6): 1557-1567, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28425576

RESUMO

Mesenchymal stromal cells (MSCs) from different sources have differential effects on lung injury. To compare the effects of murine MSCs from bone marrow (BM), adipose tissue (AD), and lung tissue (LUNG) on inflammatory and remodeling processes in experimental allergic asthma, female C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) or saline (C). Twenty-four hours after the last challenge, mice received either saline (50 µl, SAL), BM-MSCs, AD-MSCs, or LUNG-MSCs (105 cells per mouse in 50 µl total volume) intratracheally. At 1 week, BM-MSCs produced significantly greater reductions in resistive and viscoelastic pressures, bronchoconstriction index, collagen fiber content in lung parenchyma (but not airways), eosinophil infiltration, and levels of interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß, and vascular endothelial growth factor (VEGF) in lung homogenates compared to AD-MSCs and LUNG-MSCs. Only BM-MSCs increased IL-10 and interferon (IFN)-γ in lung tissue. In parallel in vitro experiments, BM-MSCs increased M2 macrophage polarization, whereas AD-MSCs and LUNG-MSCs had higher baseline levels of IL-4, insulin-like growth factor (IGF), and VEGF secretion. Exposure of MSCs to serum specimens obtained from asthmatic mice promoted reductions in secretion of these mediators, particularly in BM-MSCs. Intratracheally administered BM-MSCs, AD-MSCs, and LUNG-MSCs were differentially effective at reducing airway inflammation and remodeling and improving lung function in the current model of allergic asthma. In conclusion, intratracheal administration of MSCs from BM, AD, and LUNG were differentially effective at reducing airway inflammation and remodeling and improving lung function comparably reduced inflammation and fibrogenesis in this asthma model. However, altered lung mechanics and lung remodeling responded better to BM-MSCs than to AD-MSCs or LUNG-MSCs. Moreover, each type of MSC was differentially affected in a surrogate in vitro model of the in vivo lung environment. Stem Cells Translational Medicine 2017;6:1557-1567.


Assuntos
Asma/terapia , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/metabolismo , Feminino , Pulmão/citologia , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/classificação , Camundongos , Camundongos Endogâmicos C57BL , Traqueia/citologia
3.
Front Physiol ; 7: 151, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199766

RESUMO

Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases.

4.
Stem Cells Int ; 2016: 5091838, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066079

RESUMO

Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis.

5.
Respir Physiol Neurobiol ; 187(2): 190-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548824

RESUMO

We compared the effects of bone marrow-derived mononuclear cells (BMMCs) and mesenchymal stromal cells (MSCs) on airway inflammation and remodeling and lung mechanics in experimental allergic asthma. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA group). A control group received saline using the same protocol. Twenty-four hours after the last challenge, groups were further randomized into subgroups to receive saline, BMMCs (2×10(6)) or MSCs (1×10(5)) intratracheally. BMMC and MSC administration decreased cell infiltration, bronchoconstriction index, alveolar collapse, collagen fiber content in the alveolar septa, and interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß and vascular endothelial growth factor (VEGF) levels compared to OVA-SAL. Lung function, alveolar collapse, collagen fiber deposition in alveolar septa, and levels of TGF-ß and VEGF improved more after BMMC than MSC therapy. In conclusion, intratracheal BMMC and MSC administration effectively modulated inflammation and fibrogenesis in an experimental model of asthma, but BMMCs was associated with greater benefit in terms of reducing levels of fibrogenesis-related growth factors.


Assuntos
Asma/patologia , Células da Medula Óssea/patologia , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise de Variância , Animais , Antígenos CD/metabolismo , Asma/induzido quimicamente , Asma/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA