Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18001, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865691

RESUMO

The objectives of this study were twofold: (1) to identify potential differences in the ruminal and fecal metabolite profiles of Nelore bulls under different nutritional interventions; and (2) to identify metabolites associated with cattle sustainability related-traits. We used different nutritional interventions in the feedlot: conventional (Conv; n = 26), and by-product (ByPr, n = 26). Thirty-eight ruminal fluid and 27 fecal metabolites were significantly different (P < 0.05) between the ByPr and Conv groups. Individual dry matter intake (DMI), residual feed intake (RFI), observed water intake (OWI), predicted water intake (WI), and residual water intake (RWI) phenotypes were lower (P < 0.05) in the Conv group, while the ByPr group exhibited lower methane emission (ME) (P < 0.05). Ruminal fluid dimethylamine was significantly associated (P < 0.05) with DMI, RFI, FE (feed efficiency), OWI and WI. Aspartate was associated (P < 0.05) with DMI, RFI, FE and WI. Fecal C22:1n9 was significantly associated with OWI and RWI (P < 0.05). Fatty acid C14:0 and hypoxanthine were significantly associated with DMI and RFI (P < 0.05). The results demonstrated that different nutritional interventions alter ruminal and fecal metabolites and provided new insights into the relationship of these metabolites with feed efficiency and water intake traits in Nelore bulls.


Assuntos
Ingestão de Líquidos , Comportamento Alimentar , Bovinos , Animais , Masculino , Metano/metabolismo , Dieta/veterinária , Ração Animal/análise , Ingestão de Alimentos , Fezes
2.
Mol Genet Genomics ; 295(5): 1113-1127, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32444960

RESUMO

An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level miRNA-mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. Although we provided some evidence to understand this complex relationship, future work should determine the functional implications of minerals for miRNA levels and their feedback regulation system.\\An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level miRNA-mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. Although we provided some evidence to understand this complex relationship, future work should determine the functional implications of minerals for miRNA levels and their feedback regulation system.


Assuntos
Cálcio/metabolismo , Redes Reguladoras de Genes , Ferro/metabolismo , MicroRNAs/genética , Músculo Esquelético/metabolismo , Animais , Bovinos , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Carne/análise , Carne/normas , Família Multigênica , Análise de Sequência de RNA/veterinária
3.
Physiol Genomics ; 51(11): 529-538, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545932

RESUMO

Meat quality has an inherent complexity because of the multiple interrelated causative factors and layers of feedback regulation. Understanding the key factors and their interactions has been challenging, despite the availability of remarkable high-throughput tools and techniques that have provided insights on muscle metabolism and the genetic basis of meat quality. Likewise, we have deepened our knowledge about mineral metabolism and its role in cell functioning. Regardless of these facts, complex traits like mineral content and meat quality have been studied under reductionist approaches. However, as these phenotypes arise from complex interactions among different biological layers (genome, transcriptome, proteome, epigenome, etc.), along with environmental effects, a holistic view and systemic-level understanding of the genetic basis of complex phenotypes are in demand. Based on the state of the art, we addressed some of the questions regarding the interdependence of meat quality traits and mineral content. Furthermore, we sought to highlight potential regulatory mechanisms arising from the genes, miRNAs, and mineral interactions, as well as the pathways modulated by this interplay affecting muscle, mineral metabolism, and meat quality. By answering these questions, we did not intend to give an exhaustive review but to identify the key biological points, the challenges, and benefits of integrative genomic approaches.


Assuntos
Carne , Minerais/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Animais , Cruzamento , Metabolismo dos Lipídeos , MicroRNAs/biossíntese , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
4.
Front Genet ; 10: 210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930938

RESUMO

Meat quality is a complex trait that is influenced by genetic and environmental factors, which includes mineral concentration. However, the association between mineral concentration and meat quality, and the specific molecular pathways underlying this association, are not well explored. We therefore analyzed gene expression as measured with RNA-seq in Longissimus thoracis muscle of 194 Nelore steers for association with three meat quality traits (intramuscular fat, meat pH, and tenderness) and the concentration of 13 minerals (Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn). We identified seven sets of co-expressed genes (modules) associated with at least two traits, which indicates that common pathways influence these traits. From pathway analysis of module hub genes, we further found an over-representation for energy and protein metabolism (AMPK and mTOR signaling pathways) in addition to muscle growth, and protein turnover pathways. Among the identified hub genes FASN, ELOV5, and PDE3B are involved with lipid metabolism and were affected by previously identified eQTLs associated to fat deposition. The reported hub genes and over-represented pathways provide evidence of interplay among gene expression, mineral concentration, and meat quality traits. Future studies investigating the effect of different levels of mineral supplementation in the gene expression and meat quality traits could help us to elucidate the regulatory mechanism by which the genes/pathways are affected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA