Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067498

RESUMO

Pollen, a remarkably versatile natural compound collected by bees for its abundant source of proteins and nutrients, represents a rich reservoir of diverse bioactive compounds with noteworthy chemical and therapeutic potential. Its extensive biological effects have been known and exploited since ancient times. Today, there is an increased interest in finding natural compounds against oxidative stress, a factor that contributes to various diseases. Recent research has unraveled a multitude of biological activities associated with bee pollen, ranging from antioxidant, anti-inflammatory, antimicrobial, and antifungal properties to potential antiviral and anticancer applications. Comprehending the extensive repertoire of biological properties across various pollen sources remains challenging. By investigating a spectrum of pollen types and their chemical composition, this review produces an updated analysis of the bioactive constituents and the therapeutic prospects they offer. This review emphasizes the necessity for further exploration and standardization of diverse pollen sources and bioactive compounds that could contribute to the development of innovative therapies.


Assuntos
Anti-Infecciosos , Antioxidantes , Abelhas , Animais , Antioxidantes/química , Anti-Infecciosos/análise , Pólen/química , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise
2.
Nanomaterials (Basel) ; 13(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37999273

RESUMO

The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.

3.
ACS Infect Dis ; 9(7): 1283-1302, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37347230

RESUMO

The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.


Assuntos
Anti-Infecciosos , Sistemas CRISPR-Cas , Bactérias/genética , Anti-Infecciosos/farmacologia , Plasmídeos/genética , Antibacterianos/farmacologia
4.
Front Bioeng Biotechnol ; 11: 1069628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845183

RESUMO

Synthetic biology (SynBio) is a rapidly advancing multidisciplinary field in which South American countries such as Chile, Argentina, and Brazil have made notable contributions and have established leadership positions in the region. In recent years, efforts have strengthened SynBio in the rest of the countries, and although progress is significant, growth has not matched that of the aforementioned countries. Initiatives such as iGEM and TECNOx have introduced students and researchers from various countries to the foundations of SynBio. Several factors have hindered progress in the field, including scarce funding from both public and private sources for synthetic biology projects, an underdeveloped biotech industry, and a lack of policies to promote bio-innovation. However, open science initiatives such as the DIY movement and OSHW have helped to alleviate some of these challenges. Similarly, the abundance of natural resources and biodiversity make South America an attractive location to invest in and develop SynBio projects.

5.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770734

RESUMO

Natural extracts have been and continue to be used to treat a wide range of medical conditions, from infectious diseases to cancer, based on their convenience and therapeutic potential. Natural products derived from microbes, plants, and animals offer a broad variety of molecules and chemical compounds. Natural products are not only one of the most important sources for innovative drug development for animal and human health, but they are also an inspiration for synthetic biology and chemistry scientists towards the discovery of new bioactive compounds and pharmaceuticals. This is particularly relevant in the current context, where antimicrobial resistance has risen as a global health problem. Thus, efforts are being directed toward studying natural compounds' chemical composition and bioactive potential to generate drugs with better efficacy and lower toxicity than existing molecules. Currently, a wide range of methodologies are used to analyze the in vitro activity of natural extracts to determine their suitability as antimicrobial agents. Despite traditional technologies being the most employed, technological advances have contributed to the implementation of methods able to circumvent issues related to analysis capacity, time, sensitivity, and reproducibility. This review produces an updated analysis of the conventional and current methods to evaluate the antimicrobial activity of natural compounds.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Animais , Humanos , Reprodutibilidade dos Testes , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Plantas , Produtos Biológicos/farmacologia , Produtos Biológicos/química
6.
Front Nutr ; 9: 1067647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505262

RESUMO

Studies in human microbiota dysbiosis have shown that short-chain fatty acids (SCFAs) like propionate, acetate, and particularly butyrate, positively affect energy homeostasis, behavior, and inflammation. This positive effect can be demonstrated in the reduction of butyrate-producing bacteria observed in the gut microbiota of individuals with type 2 diabetes (T2DM) and other energy-associated metabolic alterations. Butyrate is the major end product of dietary fiber bacterial fermentation in the large intestine and serves as the primary energy source for colonocytes. In addition, it plays a key role in reducing glycemia and improving body weight control and insulin sensitivity. The major mechanisms involved in butyrate regulation include key signaling pathways such as AMPK, p38, HDAC inhibition, and cAMP production/signaling. Treatment strategies using butyrate aim to increase its intestine levels, bioavailability, and improvement in delivery either through direct supplementation or by increasing dietary fiber in the diet, which ultimately generates a higher production of butyrate in the gut. In the final part of this review, we present a summary of the most relevant studies currently being carried out in humans.

7.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889361

RESUMO

Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.


Assuntos
Alcaloides , Antocianinas , Alcaloides/farmacologia , Antioxidantes/química , Bactérias , Taninos/farmacologia
8.
Diagnostics (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34829328

RESUMO

The COVID-19 pandemic has had an enormous impact on economies and health systems globally, therefore a top priority is the development of increasingly better diagnostic and surveillance alternatives to slow down the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In order to establish massive testing and contact tracing policies, it is crucial to have a clear view of the diagnostic options available and their principal advantages and drawbacks. Although classical molecular methods such as RT-qPCR are broadly used, diagnostic alternatives based on technologies such as LAMP, antigen, serological testing, or the application of novel technologies such as CRISPR-Cas for diagnostics, are also discussed. The present review also discusses the most important automation strategies employed to increase testing capability. Several serological-based diagnostic kits are presented, as well as novel nanotechnology-based diagnostic methods. In summary, this review provides a clear diagnostic landscape of the most relevant tools to track COVID-19.

9.
Front Pharmacol ; 12: 598925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716737

RESUMO

Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19. Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics. Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at https://github.com/muntisa/immuno-drug-repurposing-COVID-19.

10.
Microb Cell Fact ; 17(1): 74, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764418

RESUMO

BACKGROUND: Despite its ability to grow and produce high-value molecules using renewable carbon sources, two main factors must be improved to use Burkholderia sacchari as a chassis for bioproduction at an industrial scale: first, the lack of molecular tools to engineer this organism and second, the inherently slow growth rate and poly-3-hydroxybutyrate [P(3HB)] production using xylose. In this work, we have addressed both factors. RESULTS: First, we adapted a set of BglBrick plasmids and showed tunable expression in B. sacchari. Finally, we assessed growth rate and P(3HB) production through overexpression of xylose transporters, catabolic or regulatory genes. Overexpression of xylR significantly improved growth rate (55.5% improvement), polymer yield (77.27% improvement), and resulted in 71% of cell dry weight as P(3HB). CONCLUSIONS: These values are unprecedented for P(3HB) accumulation using xylose as a sole carbon source and highlight the importance of precise expression control for improving utilization of hemicellulosic sugars in B. sacchari.


Assuntos
Bioengenharia/métodos , Burkholderia/química , Hidroxibutiratos/química , Poliésteres/química , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA