Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1864(4): 183868, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063401

RESUMO

Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.


Assuntos
Trifosfato de Adenosina/metabolismo , Cloretos/química , Compostos Férricos/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células CACO-2 , Cloretos/metabolismo , Enterócitos/citologia , Enterócitos/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Compostos Férricos/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ratos , ATPase Trocadora de Sódio-Potássio/genética , Suínos
2.
J Membr Biol ; 254(5-6): 499-512, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716469

RESUMO

We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.


Assuntos
Glicosídeos Cardíacos/metabolismo , Células CACO-2 , Caveolina 1 , Colesterol , Filipina , Células HeLa , Humanos , Ouabaína/farmacologia , Fosfolipídeos
3.
J Membr Biol ; 254(5-6): 475-486, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34104985

RESUMO

Changes in metabolism are mechanisms that are largely implicated in the development, progression, and metastasis of head and neck squamous cell carcinoma (HNSCC) and also in resistance to different anticancer therapies. Identification of biomarkers for differentiation between cancerous and normal epithelium, treatment design and prognosis remain a vital issue in the field of head and neck cancer. The present study analyzed the main biochemical changes that occur in HNSCC tumors by through mechanisms involving oxidative stress. The release of substances reactive to thiobarbituric acid was significantly lower in HNSCC tumor tissue as compared to healthy tissue. The assays related to the lipid profile assays showed changes in membrane biophysics of tumor cells due to an increase in total phospholipids and total cholesterol, as well as an increased activity and expression of the α1 subunit of Na, K-ATPase, which is fundamental in the process of carcinogenesis. The modulation of the antioxidant system was also affected, with a decrease in the catalytic activity of the enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as a reduction of glutathione (GSH) content and an increase in H2O2 content. A reduction in catalase (CAT) activity was observed. The data presented here are in accordance with important findings described by us in a previous study, involving the same individuals, but with a focus on the damage generated in red blood cells, resulting from tumor installation. Therefore, it was possible to conclude that the biochemical alterations found in HNSCC cells are fundamental for transformation and maintenance of the tumor cell and once it is installed, it is also capable of generating injuries in the patients' red blood cells. Our data demonstrate that this could be a promising biomarker for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Estresse Oxidativo , Adenosina Trifosfatases , Humanos , Peróxido de Hidrogênio , Carcinoma de Células Escamosas de Cabeça e Pescoço
4.
Mol Cell Biochem ; 476(4): 1825-1848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459980

RESUMO

Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Cardenolídeos/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
5.
J Membr Biol ; 253(6): 617-629, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33089392

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous and complex disease, both from a clinical and molecular point of view. The prolonged use of alcohol and tobacco, along with the release of tumor secretions can modulate blood cells, such as erythrocytes. Here, this study was conducted with 24 patients diagnosed with HNSCC and an equal number of healthy individuals are matched by age and gender. The levels of lipid peroxidation were measured using the individual plasma, while for lipid concentrations, identification and quantification Na, K-ATPase activity and osmotic fragility, the red blood cell concentrate were used. The release of TBARS was significantly higher in patients with HNSCC. The lipid profile assays demonstrated a rearrangement of the erythrocyte membrane due to a decrease in total phospholipids and phosphatidylethanolamine followed by an increase in total cholesterol and phosphatidylcholine. Na, K-ATPase activity also increased. Erythrocytes were more fragile in patients with HNSCC than in health individuals. Therefore, the membrane of erythrocytes were rearranged and Na, K-ATPase function altered in the HNSCC patients. Our findings suggests that the alcohol, tobacco and tumor secretion modulate in a specific manner that the erythrocytes membranes of these patients making this system a potential tool for HNSCC biomarker of tumor progression.


Assuntos
Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Biomarcadores , Estudos de Casos e Controles , Humanos , Peroxidação de Lipídeos , Lipídeos de Membrana/metabolismo , Fragilidade Osmótica , Estresse Oxidativo , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Arch Insect Biochem Physiol ; 105(1): e21723, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32623787

RESUMO

Insect cuticle lipids are involved in various types of chemical communication between species, and reduce the penetration of insecticides, chemicals, and toxins, as well as provide protection against the attack of microorganisms, parasitic insects, and predators. Ecological studies related to the insect Rhynchophorus palmarum are well-known; however, very little is known about its resistance mechanisms, which includes its lipid composition and its importance, specifically the cuticle layer. This study aimed to characterize the cuticle and internal lipid compounds of the male and female R. palmarum adult insects and to evaluate the presence of antimicrobial activity. We performed by gas chromatography coupled to mass spectrometry (GC-MS) analyzes of lipid extracts fractions and we identified 10 methyl esters of fatty acids esters of C14 to C23, with variation between the sexes of C22:0, C21:0, present only in male cuticle, and C20:2 in female. The lipid content of this insect showed relevant amount of C16:1, C18:1, and C18:2. The antimicrobial activity of the cuticular and internal fractions obtained was tested, which resulted in minimum inhibitory concentrations between 12.5 and 20 µg/ml against Gram-positive bacteria (Staphylococcus epidermidis, Enterococcus faecalis), Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia), and fungal species (Candida albicans e Candida tropicalis). The antimicrobial effect of the R. palmarum cuticle open perspectives for a new source to bioinsecticidal strategies, in addition to elucidating a bioactive mixture against bacteria and fungi.


Assuntos
Anti-Infecciosos/farmacologia , Candida/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipídeos/farmacologia , Gorgulhos/química , Animais , Anti-Infecciosos/química , Ésteres/química , Ácidos Graxos/química , Lipídeos/química
7.
Ann Hematol ; 99(5): 937-945, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166377

RESUMO

Hydroxyurea (HU) is used as a therapy in sickle cell anemia (SCA). Many studies have established that HU improves patient quality of life by reducing symptoms. However, the effect of HU on erythrocytes is not well-described. We evaluated several parameters related to oxidative stress and total lipid content of erythrocytes in patients with SCA. The patient cohort consisted of 7 SCA patients treated with HU, 17 untreated SCA patients, and 15 healthy subjects. Erythrocytes from patients with SCA displayed increased oxidative stress relative to the control group, including higher thiobarbituric acid reactive substances (TBARS), Fe3+ content, and osmotic fragility, and decreased total cholesterol. We observed that treatment of SCA patients with HU increased Fe3+ content and activity of glutathione peroxidase, and decreased glutathione reductase activity, glutathione levels, total cholesterol, and phospholipid content comaperaded to patients untreated with HU. Thus, HU alters biochemical characteristics of erythrocytes; future studies will determine whether they are beneficial or not.


Assuntos
Anemia Falciforme , Eritrócitos Anormais/metabolismo , Hidroxiureia/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Colesterol/sangue , Feminino , Humanos , Masculino , Fragilidade Osmótica/efeitos dos fármacos , Fosfolipídeos/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Clin Chim Acta ; 504: 180-189, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31790701

RESUMO

Iron is an essential element for human life. However, it is a pro-oxidant agent capable of reacting with hydrogen peroxide. An iron overload can cause cellular changes, such as damage to the plasma membrane leading to cell death. Effects of iron overload in cellular biochemical processes include modulating membrane enzymes, such as the Na, K-ATPase, impairing the ionic transport and inducing irreversible damage to cellular homeostasis. To avoid such damage, cells have an antioxidant system that acts in an integrated manner to prevent oxidative stress. In addition, the cells contain proteins responsible for iron transport and storage, preventing its reaction with other substances during absorption. Moreover, iron is associated with cellular events coordinated by iron-responsive proteins (IRPs) that regulate several cellular functions, including a process of cell death called ferroptosis. This review will address the biochemical aspects of iron overload at the cellular level and its effects on important cellular structures.


Assuntos
Sobrecarga de Ferro , Humanos , Peróxido de Hidrogênio , Ferro , Estresse Oxidativo , Espécies Reativas de Oxigênio
9.
Steroids ; 155: 108551, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812624

RESUMO

Cardiotonic steroids (CTS) are agents traditionally known for their capacity to bind to the Na,K-ATPase (NKA), affecting the ion transport and the contraction of the heart. Natural CTS have been shown to also have effects on cell signaling pathways. With the goal of developing a new CTS derivative, we synthesized a new digoxin derivative, 21-benzylidene digoxin (21-BD). Previously, we have shown that this compound binds to NKA and has cytotoxic actions on cancer, but not on normal cells. Here, we further studied the mechanisms of actions of 21-BD. Working with HeLa cells, we found that 21-BD decreases the basal, as well as the insulin stimulated proliferation. 21-BD reduces phosphorylation of the epidermal growth factor receptor (EGFR) and extracellular-regulated kinase (ERK), which are involved in pathways that stimulate cell proliferation. In addition, 21-BD promotes apoptosis, which is mediated by the translocation of Bax from the cytosol to mitochondria and the release of mitochondrial cytochrome c to the cytosol. 21-BD also activated caspases-8, -9 and -3, and induced the cleavage of poly (ADP-ribose) polymerase-1 (PARP-1). Altogether, these results show that the new compound that we have synthesized exerts cytotoxic actions on HeLa cells by inhibition of cell proliferation and the activation of both the extrinsic and intrinsic apoptotic pathways. These results support the relevance of the cardiotonic steroid scaffold as modulators of cell signaling pathways and potential agents for their use in cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Digoxina/análogos & derivados , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Digoxina/química , Digoxina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Conformação Molecular , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
J Cell Biochem ; 120(10): 17108-17122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310381

RESUMO

Recently, cardiotonic steroids (CTS) have been shown to lead to the activation of Na,K-ATPase at low concentrations in brain, promoting neuroprotection against ischemia. We report here the results of the use of digoxin and its semisynthetic derivatives BD-14, BD-15, and BD-16 against partial chemical ischemic induction followed by reperfusion in murine neuroblastoma cells neuro-2a (N2a). For chemical ischemic induction, sodium azide (5 mM) was used for 5 hours, and then reperfusion was induced for 24 hours. Na,K-ATPase activity and protein levels were analyzed in membrane preparation of N2a cells pretreated with the compounds (150 nM), in the controls and in induced chemical ischemia. In the Na,K-ATPase activity and protein levels assays, the steroids digoxin and BD-15 demonstrated a capacity to modulate the activity of the enzyme directly, increasing its levels of expression and activity. Oxidative parameters, such as superoxide dismutase (SOD) activity, lipid peroxidation (thiobarbituric acid reactive substance), glutathione peroxidase (GPx), glutathione (GSH) levels, hydrogen peroxide content, and the amount of free radicals (reactive oxygen species) during induced chemical ischemia were also evaluated. Regarding the redox state, lipid peroxidation, hydrogen peroxide content, and GPx activity, we have observed an increase in the chemical ischemic group, and a reduction in the groups treated with CTS. SOD activity increased in all treated groups when compared to control and GSH levels decreased when treated with sodium azide and did not change with CTS treatments. Regarding the lipid profile, we saw a decrease in the content of phospholipids and cholesterol in the chemical ischemic group, and an increase in the groups treated with CTS. In conclusion, the compounds used in this study demonstrate promising results, since they appear to promote neuroprotection in cells exposed to chemical ischemia.


Assuntos
Digoxina/farmacologia , Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Isquemia Encefálica/prevenção & controle , Células CACO-2 , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Digoxina/análogos & derivados , Digoxina/síntese química , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Azida Sódica/antagonistas & inibidores , Azida Sódica/farmacologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA