Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961034

RESUMO

Plants produce various compounds as defensive barriers to naturally control fungal diseases. Among them, vascular wilt caused by Fusarium oxysporum is one of the most destructive diseases in crops, causing relevant economic losses. The application of synthetic fungicides is the most used management for this disease. However, this kind of method also involves adverse environmental impacts. Therefore, alternative methods are continuously being developed as a strategy to be involved in integrated pest management programs. Thus, as part of our research on antifungals of plant origin, a group of botanical extracts was assessed for the respective inhibitory effect on mycelium and conidia of F. oxysporum. Mycelial growth inhibition was measured in 12-well plates containing amended semi-solid medium, whereas conidial susceptibility was determined through microdilution. The identification of the bioactive compounds among test extracts was performed using an indirect approach, consisting of the integration of chemical composition and antifungal activity datasets through single-Y orthogonal partial least squares (OPLS) regression. Results showed that Piper aduncum extract was the most potent mycelial growth inhibitor whereas P. elongatum exhibited the best effect on conidia susceptibility. The active compounds identified through statistical integration and subsequent isolation were piperaduncin C, asebogenin and (-)-methyllinderatin. These findings indicated that the integrative, indirect approach is useful for the identification of bioactive metabolites from botanical extracts to be further used as biological protective agents against this phytopathogen.

2.
Insects ; 10(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390759

RESUMO

The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.

3.
Antioxidants (Basel) ; 8(8)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344820

RESUMO

Integrated surveys of metabolic profiles and antioxidant capacity from Chenopodium quinoa have been limited and have particularly focused on an examination of seeds and leaves. According to this, the main aim of the present study was to address an evaluation of the antioxidant activity of crude ethanolic extracts from different plant parts (leaves, stems, roots, flowers, and seeds) harvested at different times during growth and processed by two distinct drying methods: Air-drying and freeze-drying. In order to characterize the resulting extracts, the total content of phenolics (TPC) and flavonoids (TFC) was then measured through the Folin-Ciocalteu method, while antioxidant capacity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radical scavenging and ferric-reducing antioxidant power (FRAP) methods. Parallel to this evaluation, extracts were profiled by LC-DAD-ESI-MS. Data analysis was supported by statistics. Most of the extracts obtained from freeze-dried samples showed higher TPC values ranging from 6.02 to 43.47 milligram of gallic acid equivalents per gram of plant material and a TFC between 1.30 and 12.26 milligram of quercetin equivalents per gram of plant material. After statistical analysis, a low correlation between TPC and TFC values was observed regarding antioxidant capacity from DPPH and FRAP measurements of both drying methods. A multivariate analysis showed that antioxidant components and antioxidant capacity in C. quinoa changed during growth and between plant parts and drying methods. These changes need to be taken into consideration when comparing the production/accumulation of beneficial bioactive compounds in this pseudocereal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA