Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(6): 2685-2697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960534

RESUMO

Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.


Assuntos
Capsicum , Solanum , Fósseis , Frutas , América do Sul , Filogenia
2.
PhytoKeys ; 185: 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819777

RESUMO

Very few Solanaceae species are able to grow in saline soils; one of them is Lyciumhumile. This species is endemic to the Altiplano-Puna region (Central Andes, South America) where there are multiple extreme environmental conditions such as hypersaline soils. Here we present an updated description and distribution of L.humile including its new record for Bolivia at the edges of "Salar de Uyuni", the largest salt flat in the world; we discuss its ecological role in saline environments by analyzing soil salinity and cover-abundance values ​​of the studied sites. According to IUCN criteria, we recommend a category of Least Concern for L.humile, but the growing development of lithium mining in saline environments of the Altiplano-Puna region may potentially threaten exclusive communities.

3.
Plant Physiol Biochem ; 163: 166-177, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33848929

RESUMO

Knowledge about Solanaceae species naturally adapted to salinity is scarce, despite the fact that a considerable number of Solanaceae has been reported growing in saline environments. Lycium humile Phil. inhabits extreme saline soils in the Altiplano-Puna region (Central Andes, South America) and represents a promising experimental model to study salt tolerance in Solanaceae plants. Seeds, leaves and roots were collected from a saline environment (Salar del Diablo, Argentina). Seeds were scarified and 30 days after germination salt treatments were applied by adding NaCl salt pulses (up to 750 or 1000 mM). Different growth parameters were evaluated, and leaf spectral reflectance, endogenous phytohormone levels, antioxidant capacity, proline and elemental content, and morpho-anatomical characteristics in L. humile under salinity were analyzed both in controlled and natural conditions. The multiple salt tolerance mechanisms found in this species are mainly the accumulation of the phytohormone abscisic acid, the increase of the antioxidant capacity and proline content, together with the development of a large leaf water-storage parenchyma that allows Na+ accumulation and an efficient osmotic adjustment. Lycium humile is probably one of the most salt-tolerant Solanaceae species in the world, and, in controlled conditions, can effectively grow at high NaCl concentrations (at least, up to 750 mM NaCl) but also, in the absence of salts in the medium. Therefore, we propose that natural distribution of L. humile is more related to water availability, as a limiting factor of growth in Altiplano-Puna saline habitats, than to high salt concentrations in the soils.


Assuntos
Lycium , Solanaceae , Argentina , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal
4.
PhytoKeys ; 167: 13-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304116

RESUMO

Capsicum regale Barboza & Bohs, sp. nov., a new species from the tropical wet forests of the eastern Andean slopes (Colombia, Ecuador, and Peru) is described and illustrated. This new species belongs to the Andean clade (all species 2n = 26) of Capsicum and is similar to C. longifolium Barboza & S.Leiva in its glabrescence, calyx morphology, and corolla and seed color but differs in its membranous and elliptic leaves, fleshy calyces, deeper stellate corollas, longer filaments, longer and purple fruiting pedicels, purple berries, and larger seeds. Its chromosome number was counted (2n = 26), a preliminary assessment of conservation status is given and discussed, and an updated identification key to the species of the Andean clade is provided.

5.
PhytoKeys ; 164: 33-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173403

RESUMO

Since the publication of the Solanaceae treatment in "Flora Argentina" in 2013 exploration in the country and resolution of outstanding nomenclatural and circumscription issues has resulted in a number of changes to the species of the Morelloid clade of Solanum L. (Solanaceae) for Argentina. Here we describe three new species: Solanum hunzikeri Chiarini & Cantero, sp. nov., from wet high elevation areas in Argentina (Catamarca, Salta and Tucumán) and Bolivia (Chuquisaca and Tarija), S. marmoratum Barboza & S. Knapp, sp. nov., from central Argentina in Catamarca, La Pampa, La Rioja, San Juan and San Luis, and S. tiinae Barboza & S. Knapp, sp. nov., from the mountains of Jujuy, La Rioja, Salta and Tucumán. We provide descriptions, illustrations and distribution maps for all new taxa. A table of nomenclatural changes and additional taxa now known to occur in Argentina summarizes additions and changes since the "Flora Argentina". We also provide an updated key, including all new taxa for the country, to facilitate identification and further exploration.

6.
Steroids ; 162: 108700, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712169

RESUMO

Five Exodeconus species were phytochemically analyzed. From the aerial parts of E. pusillus, the 7α,27-dihydroxy-1-oxo-22R-witha-2,5,24-trienolide and three other previously unreported normal-type withanolides were isolated. All the studied species had normal type and/or ring-D aromatic withanolides, and some had already been isolated from other Solanaceae genera, and therefore, these compounds are not chemotaxonomic markers at the generic level. The chemical composition of an undescribed Exodeconus species analyzed here supports the designation of this taxon as a new entity. The integral chemical profile of Exodeconus can be evaluated for its taxonomic implication when a more robust phylogeny of Solanaceae is available that allows the phylogenetic relationships with its closest genera to be clarified.


Assuntos
Solanaceae/química , Solanaceae/classificação , Vitanolídeos/química , Vitanolídeos/isolamento & purificação
7.
PhytoKeys ; 140: 125-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194318

RESUMO

Capsicum carassense Barboza & Bianchetti sp. nov., a species from mid-elevation of the Atlantic Forest (Minas Gerais, Brazil) is described and illustrated. This endemic new species is distinguished from the most similar C. mirabile Mart. by its moderate to dense general pubescence, narrowly elliptic leaves and larger calyx appendages and corollas. A key for the native Brazilian species of Capsicum growing in the state of Minas Gerais is also provided.

8.
Front Pharmacol ; 11: 593845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424604

RESUMO

Several plants from South America show strong antitumoral properties based on anti-proliferative and/or pro-apoptotic activities. In this work we aimed to identify selective cytotoxic compounds that target BRCA1-deficient cancer cells by Synthetic Lethality (SL) induction. Using a high-throughput screening technology developed in our laboratory, we analyzed a collection of extracts from 46 native plant species from Argentina using a wide dose-response scheme. A highly selective SL-induction capacity was found in an alkaloidal extract from Zanthoxylum coco (Fam. Rutaceae). Bio-guided fractionation coupled to HPLC led to the identification of active benzophenanthridine alkaloids. The most potent SL activity was found with the compound oxynitidine, which showed a remarkably low relative abundance in the active fractions. Further validation experiments were performed using the commercially available and closely related analog nitidine, which showed SL-induction activity against various BRCA1-deficient cell lines with different genetic backgrounds, even in the nanomolar range. Exploration of the underlying mechanism of action using BRCA1-KO cells revealed AKT and topoisomerases as the potential targets responsible of nitidine-triggered SL-induction. Taken together, our findings expose an unforeseen therapeutic activity of alkaloids from Zanthoxylum-spp. that position them as novel lead molecules for drug discovery.

9.
Mol Phylogenet Evol ; 137: 168-189, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077789

RESUMO

A group of seven endemic Polystichum species inhabit Patagonia, the southern region of South America. To date, evolutionary relationships of these Austral South American Polystichum remain unknown. The biota of the Southern Andes appears to be more closely related to the temperate Australasian species than to northern South American ones. Differences in morphological characters suggested that Austral South American Polystichum follows that biogeographical pattern, not being closely related to their congeners in the Northern and Central Andes. We sought to reveal the evolutionary relationships, estimate the divergence times and reconstruct both ancestral areas and ancestral ploidy levels of Austral South America Polystichum. Phylogenetic relationships were estimated using maximum likelihood and Bayesian approaches. The seven Austral South American species plus 31 Polystichum species spanning all other major biogeographic regions were sampled for three DNA markers. Divergence times were estimated in BEAST and Bayesian binary Markov chain Monte Carlo reconstruction was applied in order to infer ancestral areas. The evolution of ploidy was reconstructed on the maximum clade credibility tree, using stochastic character mapping. Austral South American Polystichum was recovered as monophyletic. The earliest divergence reconstructed within the Austral South American Clade was that of Polystichum andinum; subsequently two other lineages diverged comprising the remaining Austral South American species. The Austral South American lineage is not closely allied to North and Central Andes congeners. Long-distance dispersal of an ancestral tetraploid from Australasia during the late Miocene is the most likely explanation for the origin of Patagonian Polystichum. Then, Pliocene and Pleistocene orogenic and climatic changes may have shaped its diversification in Patagonia.


Assuntos
Filogeografia , Polystichum/classificação , Sequência de Bases , Teorema de Bayes , Variação Genética , Filogenia , Ploidias , Polystichum/genética , América do Sul , Especificidade da Espécie , Fatores de Tempo
10.
Am J Bot ; 106(2): 270-279, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779447

RESUMO

PREMISE OF THE STUDY: The evolution of novel fruit morphologies has been integral to the success of angiosperms. The inflated fruiting calyx, in which the balloon-like calyx swells to completely surround the fruit, has evolved repeatedly across angiosperms and is postulated to aid in protection and dispersal. We investigated the evolution of this trait in the tomatillos and their allies (Physalideae, Solanaceae). METHODS: The Physalideae phylogeny was estimated using four regions (ITS, LEAFY, trnL-F, waxy) with maximum likelihood (ML) and Bayesian inference. Under the best-fitting ML model of trait evolution, we estimated ancestral states along with the numbers of gains and losses of fruiting calyx accrescence and inflation with Bayesian stochastic mapping. Also, phylogenetic signal in calyx morphology was examined with two metrics (parsimony score and Fritz and Purvis's D). KEY RESULTS: Based on our well-resolved and densely sampled phylogeny, we infer that calyx evolution has proceeded in a stepwise and directional fashion, from non-accrescent to accrescent to inflated. In total, we inferred 24 gains of accrescence, 24 subsequent transitions to a fully inflated calyx, and only two reversals. Despite this lability, fruiting calyx accrescence and inflation showed strong phylogenetic signal. CONCLUSIONS: Our phylogeny greatly improves the resolution of Physalideae and highlights the need for taxonomic work. The comparative analyses reveal that the inflated fruiting calyx has evolved many times and that the trajectory toward this phenotype is generally stepwise and irreversible. These results provide a strong foundation for studying the genetic and developmental mechanisms responsible for the repeated origins of this charismatic fruit trait.


Assuntos
Flores/genética , Filogenia , Solanaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA