Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
IUBMB Life ; 75(12): 972-982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470229

RESUMO

The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.


Assuntos
DNA Mitocondrial , Saccharomyces cerevisiae , DNA Mitocondrial/genética , Saccharomyces cerevisiae/genética , Biolística/métodos , Transformação Genética , Mitocôndrias/genética
2.
J Biol Chem ; 298(8): 102214, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779633

RESUMO

Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Yeast ; 39(3): 208-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34713496

RESUMO

In Saccharomyces cerevisiae, mitoribosomes are composed of a 54S large subunit (mtLSU) and a 37S small subunit (mtSSU). The two subunits altogether contain 73 mitoribosome proteins (MRPs) and two ribosomal RNAs (rRNAs). Although mitoribosomes preserve some similarities with their bacterial counterparts, they have significantly diverged by acquiring new proteins, protein extensions, and new RNA segments, adapting the mitoribosome to the synthesis of highly hydrophobic membrane proteins. In this study, we investigated the functional relevance of mitochondria-specific protein extensions at the C-terminus (C) or N-terminus (N) present in 19 proteins of the mtLSU. The studied mitochondria-specific extensions consist of long tails and loops extending from globular domains that mainly interact with mitochondria-specific proteins and 21S rRNA moieties extensions. The expression of variants devoid of extensions in uL4 (C), uL5 (N), uL13 (N), uL13 (C), uL16 (C), bL17 (N), bL17 (C), bL21 (24), uL22 (N), uL23 (N), uL23 (C), uL24 (C), bL27 (C), bL28 (N), bL28 (C), uL29 (N), uL29 (C), uL30 (C), bL31 (C), and bL32 (C) did not rescue the mitochondrial protein synthesis capacities and respiratory growth of the respective null mutants. On the contrary, the truncated form of the mitoribosome exit tunnel protein uL24 (N) yields a partially functional mitoribosome. Also, the removal of mitochondria-specific sequences from uL1 (N), uL3 (N), uL16 (N), bL9 (N), bL19 (C), uL29 (C), and bL31 (N) did not affect the mitoribosome function and respiratory growth. The collection of mutants described here provides new means to study and evaluate defective assembly modules in the mitoribosome biogenesis process.


Assuntos
Mitocôndrias , Ribossomos Mitocondriais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
FEMS Yeast Res ; 21(7)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755843

RESUMO

Coenzyme Q (CoQ) is an essential molecule that consists of a highly substituted benzene ring attached to a polyprenyl tail anchored in the inner mitochondrial membrane. CoQ transfers electrons from NADH dehydrogenase and succinate dehydrogenase complexes toward ubiquinol-cytochrome c reductase, and that allows aerobic growth of cells. In Saccharomyces cerevisiae, the synthesis of CoQ depends on fourteen proteins Coq1p-Co11p, Yah1p, Arh1p, and Hfd1p. Some of these proteins are components of CoQ synthome. Using ab initio molecular modeling and site-directed mutagenesis, we identified the functional residues of the O-methyltransferase Coq3p, which depends on S-adenosylmethionine for catalysis and is necessary for two O-methylation steps required for CoQ maturation. Conserved residues as well as those that coevolved in the protein structure were found to have important roles in respiratory growth, CoQ biosynthesis, and also in the stability of CoQ synthome proteins. Finally, a multiple sequence alignment showed that S. cerevisiae Coq3p has a 45 amino acid residues insertion that is poorly conserved or absent in oleaginous yeast, cells that can store up to 20% of their dry weight as lipids. These results point to the Coq3p structural determinants of its biological and catalytic function and could contribute to the development of lipid-producing yeast for biotechnology.


Assuntos
Metiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Membranas Mitocondriais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Arch Biochem Biophys ; 666: 63-72, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940569

RESUMO

In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.


Assuntos
Cisteína/genética , Longevidade , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Serina/genética , Glutationa/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
FEBS J ; 286(7): 1407-1419, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30767393

RESUMO

Mitochondrial translation normally requires formylation of the initiator tRNA-met, a reaction catalyzed by the enzyme formyltransferase, Fmt1p and MTFMT in Saccharomyces cerevisiae and human mitochondria, respectively. Yeast fmt1 mutants devoid of Fmt1p, however, can synthesize all mitochondrial gene products by initiating translation with a non-formylated methionyl-tRNA. Yeast synthetic respiratory-deficient fmt1 mutants have uncovered several factors suggested to play a role in translation initiation with non-formylated methionyl-tRNA. Here, we present evidence that Msc6p, a member of the pentatricopeptide repeat (PPR) motif family, is another essential factor for mitochondrial translation in fmt1 mutants. The PPR motif is characteristic of RNA-binding proteins found in chloroplasts and plant and fungal mitochondria, and is generally involved in RNA stability and transport. Moreover, in the present study, we show that the respiratory deficiency of fmt1msc6 double mutants can be rescued by overexpression of the yeast mitochondrial initiation factor mIF-2, encoded by IFM1. The role of Msc6p in translational initiation is further supported by pull-down assays showing that it transiently interacts with mIF-2. Altogether, our data indicate that Msc6p is an important factor in mitochondrial translation with an auxiliary function related to the mIF-2-dependent formation of the initiation complex.


Assuntos
Mitocôndrias/metabolismo , Iniciação Traducional da Cadeia Peptídica , Processamento de Proteína Pós-Traducional , RNA de Transferência de Metionina , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
7.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 806-818, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759361

RESUMO

Mitochondrial tRNAs are processed at their 5'ends by highly divergent but ubiquitous RNase P. In Saccharomyces cerevisiae, Rpm2p is the protein component of RNase P. Here, we identify four novel genes MTA1, MTA2, GEP5 and PET130 of the Saccharomycetaceae family that are necessary for an efficient processing of mitochondrial tRNAs. Null mutants of mta1, mta2 and gep5 have severely reduced levels of mitochondrial tRNAs; in addition, temperature sensitive (ts) mutants of mta1, mta2, pet130 and gep5 accumulated tRNAs precursor transcripts at the restrictive but not at the permissive temperature. The same mitochondrial tRNAs precursors were also identified in rpm2 ts mutants or in the double ts mutants mta1 rpm2 and mta2 rpm2. The genetic and physical association of these four novel genes corroborate the hypothesis that they have their function associated. Different combinations of mta1, mta2, pet130 and gep5 ts alleles display a synthetic respiratory deficient phenotype, an indication of genetic interactions of the genes. Indeed, Mta1p, Mta2p, Pet130p, and Gep5p are associated with the mitochondrial inner membrane and are all extracted and sediment in sucrose gradients as high molecular weight complexes, where they may be present in a common complex with Rpm2p. This is supported by pull-down assays showing co-immunopurification of Rpm2 with Mta1p.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , RNA Fúngico/biossíntese , RNA Mitocondrial/biossíntese , RNA de Transferência/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , RNA Fúngico/genética , RNA Mitocondrial/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
9.
Arch Biochem Biophys, v. 666, p. 63-72, maio 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2720

RESUMO

In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the alpha5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (alpha5-C76S or alpha5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that alpha5-C76S or alpha5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random alpha5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., a-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the alpha5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the a5-subunit, and consequently impacts the lifespan of yeast.

10.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1896-1903, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29526819

RESUMO

AMP-activated protein kinase (AMPK) regulates many different metabolic pathways in eukaryote cells including mitochondria biogenesis and energy homeostasis. Here we identify a patient with hypotonia, weakness, delayed milestones and neurological impairment since birth harbouring a novel homozygous mutation in the AMPK catalytic α-subunit 1, encoded by the PRKAA1 gene. The homozygous mutation p.S487L in isoform 1 present in the patient is in a cryptic residue for AMPK activity. In the present study, we performed the characterization of mitochondrial respiratory properties of the patient, in comparison to healthy controls, through the culture of skin fibroblasts in order to understand some of the cellular consequences of the PRKAA1 mutation. In these assays, mitochondrial respiratory complex I showed lower activity, which was followed by a decrement in the mtDNA copy number, which is a probable consequence of the lower expression of PGC-1α and PRKAA1 itself as measured in our quantitative PCRs experiments. Confirming the effect of the patient mutation in respiration, transfection of patient fibroblasts with wild type PRKAA1 partially restore complex I level. The preliminary clinic evaluations of the patient suggested a metabolic defect related to the mitochondrial respiratory function, therefore treatment with CoQ10 supplementation dose started four years ago and a clear improvement in motor skills and strength has been achieved with this treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibroblastos , Homozigoto , Mitocôndrias , Mutação de Sentido Incorreto , Consumo de Oxigênio , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Substituição de Aminoácidos , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA