Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(7): e0014324, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899927

RESUMO

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Artemisininas/farmacologia , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Humanos , Testes de Sensibilidade Parasitária , Animais , Peróxidos/farmacologia
2.
Chemistry ; 29(55): e202301642, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37427863

RESUMO

Malaria is the one of the deadliest infectious diseases worldwide. Chemically, quinolines are excellent ligands for metal coordination and are deployed as drugs for malaria treatment. There is a growing body of evidence indicating that metal complexes can be conjugated with antimalarial quinolines to be used as chemical tools to overcome the disadvantages of quinolines, improving their bioactive speciation, cellular distribution, and subsequently broadening the spectrum of activity to multiple stages of the complex Plasmodium life cycle. In this study, four novel complexes of ruthenium(II)- and gold(I)-containing amodiaquine (AQ) were synthesized, and a careful chemical characterization revealed the precise coordination site of AQ to the metals. Their speciation in solution was investigated, demonstrating the stability of the quinoline-metal bond. RuII - and AuI -AQ complexes were demonstrated to be potent and efficacious in inhibiting parasite growth in multiple stages of the Plasmodium life cycle as assayed in vitro and in vivo. These properties could be attributed to the ability of the metal-AQ complexes to reproduce the suppression of heme detoxification induced by AQ, while also inhibiting other processes in the parasite life cycle; this can be attributed to the action of the metallic species. Altogether, these findings indicate that metal coordination with antimalarial quinolines is a potential chemical tool for drug design and discovery in malaria and other infectious diseases susceptible to quinoline treatment.


Assuntos
Antimaláricos , Complexos de Coordenação , Malária , Plasmodium , Quinolinas , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Amodiaquina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Malária/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Plasmodium falciparum
3.
Pharmaceutics ; 14(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35745823

RESUMO

Hybrid-based drugs linked through a transition metal constitute an emerging concept for Plasmodium intervention. To advance the drug design concept and enhance the therapeutic potential of this class of drugs, we developed a novel hybrid composed of quinolinic ligands amodiaquine (AQ) and primaquine (PQ) linked by gold(I), named [AuAQPQ]PF6. This compound demonstrated potent and efficacious antiplasmodial activity against multiple stages of the Plasmodium life cycle. The source of this activity was thoroughly investigated by comparing parasite susceptibility to the hybrid's components, the annotation of structure-activity relationships and studies of the mechanism of action. The activity of [AuAQPQ]PF6 for the parasite's asexual blood stages was influenced by the presence of AQ, while its activity against gametocytes and pre-erythrocytic parasites was influenced by both quinolinic components. Moreover, the coordination of ligands to gold(I) was found to be essential for the enhancement of potency, as suggested by the observation that a combination of quinolinic ligands does not reproduce the antimalarial potency and efficacy as observed for the metallic hybrid. Our results indicate that this gold(I) hybrid compound presents a dual mechanism of action by inhibiting the beta-hematin formation and enzymatic activity of thioredoxin reductases. Overall, our findings support the potential of transition metals as a dual chemical linker and an antiplasmodial payload for the development of hybrid-based drugs.

4.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34832911

RESUMO

A recently developed artemisinin-quinoline hybrid, named 163A, has been shown to display potent activity against the asexual blood stage of Plasmodium, the malaria parasite. In this study, we determined its in vitro cytotoxicity to mammalian cells, its potency to suppress P. berghei hepatic infection and to decrease the viability of P. falciparum gametocytes, in addition to determining whether the drug exhibits efficacy of a P. berghei infection in mice. This hybrid compound has a low level of cytotoxicity to mammalian cells and, conversely, a high level of selectivity. It is potent in the prevention of hepatic stage development as well as in killing gametocytes, denoting a potential blockage of malaria transmission. The hybrid presents a potent inhibitory activity for beta-hematin crystal formation, in which subsequent assays revealed that its endoperoxide component undergoes bioactivation by reductive reaction with ferrous heme towards the formation of heme-drug adducts; in parallel, the 7-chloroquinoline component has binding affinity for ferric hemin. Both structural components of the hybrid co-operate to enhance the inhibition of beta-hematin, and this bitopic ligand property is essential for arresting the growth of asexual blood parasites. We demonstrated the in vivo efficacy of the hybrid as an erythrocytic schizonticide agent in comparison to a chloroquine/artemisinin combination therapy. Collectively, the findings suggest that the bitopic property of the hybrid is highly operative on heme detoxification suppression, and this provides compelling evidence for explaining the action of the hybrid on the asexual blood stage. For sporozoite and gametocyte stages, the hybrid conserves the potency typically observed for endoperoxide drugs, and this is possibly achieved due to the redox chemistry of endoperoxide components with ferrous heme.

5.
Parasitology ; 143(12): 1543-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27439976

RESUMO

We report the pharmacological activity of organoruthenium complexes containing chloroquine (CQ) as a chelating ligand. The complexes displayed intraerythrocytic activity against CQ-sensitive 3D7 and CQ-resistant W2 strains of Plasmodium falciparum, with potency and selectivity indexes similar to those of CQ. Complexes displayed activity against all intraerythrocytic stages, but moderate activity against Plasmodium berghei liver stages. However, unlike CQ, organoruthenium complexes impaired gametocyte viability and exhibited fast parasiticidal activity against trophozoites for P. falciparum. This functional property results from the ability of complexes to quickly induce oxidative stress. The parasitaemia of P. berghei-infected mice was reduced by treatment with the complex. Our findings demonstrated that using chloroquine for the synthesis of organoruthenium complexes retains potency and selectivity while leading to an increase in the spectrum of action and parasite killing rate relative to CQ.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Compostos Organometálicos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Rutênio/farmacologia , Animais , Antimaláricos/administração & dosagem , Cloroquina/administração & dosagem , Modelos Animais de Doenças , Malária/tratamento farmacológico , Camundongos , Compostos Organometálicos/administração & dosagem , Estresse Oxidativo , Parasitemia/tratamento farmacológico , Rutênio/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA