Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L662-L674, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786934

RESUMO

Early life over-nutrition, as experienced in maternal obesity, is a risk factor for developing cardiorespiratory and metabolic diseases. Here we investigated the effects of high-fat diet (HFD) consumption on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD (O-HFD). Adult female Holtzman rats were given a standard diet (SD) or HFD from 6 wk before gestation to weaning. At weaning (P21), the male offspring from SD dams (O-SD) and O-HFD received SD until the experimental day (P28-P45). Nerve recordings performed in decerebrated in situ preparations demonstrated that O-HFD animals presented abdominal expiratory hyperactivity under resting conditions and higher vasoconstrictor sympathetic activity levels. The latter was associated with blunted respiratory-related oscillations in sympathetic activity, especially in control animals. When exposed to elevated hypercapnia or hypoxia levels, the O-HFD animals mounted similar ventilatory and respiratory motor responses as the control animals. Hypercapnia and hypoxia exposure also increased sympathetic activity in both groups but did not reinstate the respiratory-sympathetic coupling in the O-HFD rats. In freely behaving conditions, O-HFD animals exhibited higher resting pulmonary ventilation and larger variability of arterial pressure levels than the O-SD animals due to augmented sympathetic modulation of blood vessel diameter. Maternal obesity modified the functioning of cardiorespiratory systems in offspring at a young age, inducing active expiration and sympathetic overactivity under resting conditions. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.NEW & NOTEWORTHY Maternal obesity is a risk factor for developing cardiorespiratory and metabolic diseases. This study highlights the changes on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD. Maternal obesity modified the functioning of cardiorespiratory systems in offspring, inducing active expiration and sympathetic overactivity. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.


Assuntos
Hipertensão , Doenças Metabólicas , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Síndrome do Desconforto Respiratório , Humanos , Criança , Ratos , Animais , Masculino , Feminino , Gravidez , Dieta Hiperlipídica/efeitos adversos , Obesidade Materna/complicações , Hipercapnia , Respiração , Obesidade , Ratos Sprague-Dawley , Hipóxia/complicações , Doenças Metabólicas/complicações , Síndrome do Desconforto Respiratório/complicações , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
Pulm Pharmacol Ther ; 70: 102075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428598

RESUMO

Chronic Obstructive Pulmonary Disease - COPD is characterized by the destruction of alveolar walls associated to a chronic inflammatory response of the airways. There is no clinical therapy for COPD. In this context, cell-based therapies represent a promising therapeutic approach for chronic lung disease. The goal of this work was to evaluate the effect of simvastatin on cell-based therapy in a mice emphysema model. Female FVB mice received intranasal instillation of elastase (three consecutive doses of 50 µL) in order to promote pulmonary emphysema. After 21 days of the first instillation, the animals were treated with Adipose-Derived Mesenchymal Stromal Cells (AD-MSC, 2.6 × 106) via retro-orbital infusion associated or not with simvastatin administrated daily via oral gavage (15 mg/kg/15d). Before and after these treatments, the histological and morphometrical analyses of the lung tissue, as so as lung function (whole body plethysmography) were evaluated. PAI-1 gene expression, an upregulated factor by ischemia that indicate a low survival of transplanted MSC, was also evaluated. The result regarding morphological and functional aspects of both lungs, presented no significant difference among the groups (AD-MSC or AD-MSC + Simvastatin). However, significant anatomical difference was observed in the right lung of the both groups of mice. The results shown a higher deposition of cells in the right lung, with might to be explained by anatomical differences (slightly higher right bronchi). Decreased levels of PAI-1 were observed in the simvastatin treated groups. The pulmonary ventilation was similar between the groups with only a tendency to a lower in the elastase treated animals due to a low respiratory frequency. In conclusion, the results suggest that both AD-MSC and simvastatin treatments could promote an improvement of morphological recovery of pulmonary emphysema, that it was more pronounced in the right lung.


Assuntos
Enfisema , Células-Tronco Mesenquimais , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Feminino , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Sinvastatina/farmacologia
3.
Pflugers Arch ; 472(1): 49-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884528

RESUMO

The nucleus of the solitary tract (NTS) is an important area of the brainstem that receives and integrates afferent cardiorespiratory sensorial information, including those from arterial chemoreceptors and baroreceptors. It was described that acetylcholine (ACh) in the commissural subnucleus of the NTS (cNTS) promotes an increase in the phrenic nerve activity (PNA) and antagonism of nicotinic receptors in the same region reduces the magnitude of tachypneic response to peripheral chemoreceptor stimulation, suggesting a functional role of cholinergic transmission within the cNTS in the chemosensory control of respiratory activity. In the present study, we investigated whether cholinergic receptor antagonism in the cNTS modifies the sympathetic and respiratory reflex responses to hypercapnia. Using an arterially perfused in situ preparation of juvenile male Holtzman rats, we found that the nicotinic antagonist (mecamylamine, 5 mM), but not the muscarinic antagonist (atropine, 5 mM), into the cNTS attenuated the hypercapnia-induced increase of hypoglossal activity. Furthermore, mecamylamine in the cNTS potentiated the generation of late-expiratory (late-E) activity in abdominal nerve induced by hypercapnia. None of the cholinergic antagonists microinjected in the cNTS changed either the sympathetic or the phrenic nerve responses to hypercapnia. Our data provide evidence for the role of cholinergic transmission in the cNTS, acting on nicotinic receptors, modulating the hypoglossal and abdominal responses to hypercapnia.


Assuntos
Neurônios Colinérgicos/fisiologia , Hipercapnia/metabolismo , Respiração , Transmissão Sináptica , Comissuras Telencefálicas/fisiologia , Animais , Atropina/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Hipercapnia/fisiopatologia , Nervo Hipoglosso/fisiologia , Masculino , Mecamilamina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Nervo Frênico/fisiologia , Ratos , Receptores Colinérgicos/metabolismo , Reflexo , Núcleo Solitário/fisiologia , Núcleo Solitário/fisiopatologia , Comissuras Telencefálicas/fisiopatologia
4.
Hypertens Res ; 42(4): 439-449, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30631157

RESUMO

A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Pressão Arterial/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Núcleo Solitário/metabolismo , Animais , Pressão Arterial/fisiologia , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Dieta Hiperlipídica , Masculino , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/fisiologia , Núcleo Solitário/efeitos dos fármacos
5.
Exp Physiol ; 104(1): 15-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370945

RESUMO

NEW FINDINGS: What is the central question of this study? Does carotid body input contribute to the hyperosmotic responses? What is the main finding and its importance? The response to NaCl overload is sympathorespiratory excitation. Eliminating the carotid body input reduced sympathoexcitation but did not affect the increase in phrenic burst frequency, whereas eliminating the hypothalamus prevented the tachypnoea and sympathoexcitation. We conclude that the carotid body inputs are essential for the full expression of the sympathetic activity during acute NaCl overload, whereas the tachypnoea depends on hypothalamic mechanisms. ABSTRACT: Acute salt excess activates central osmoreceptors, which trigger an increase in sympathetic and respiratory activity. The carotid bodies also respond to hyperosmolality of the extracellular compartment, but their contribution to the sympathoexcitatory and ventilatory responses to NaCl overload remains unknown. To evaluate their contribution to acute NaCl overload, we recorded thoracic sympathetic (tSNA), phrenic (PNA) and carotid sinus nerve activities in decorticate in situ preparations of male Holtzman rats (60-100 g) while delivering intra-arterial infusions of hyperosmotic NaCl (0.17, 0.3, 0.7, 1.5 and 2.0 mol l-1 ; 200 µl infusion over 25-30 s, with a 10 min time interval between solutions) or mannitol (0.3, 0.5, 1.0, 2.7 and 3.8 mol l-1 ) progressively. The cumulative infusions of hyperosmotic NaCl increased the perfusate osmolality to 341 ± 5 mosmol (kg water)-1 and elicited an immediate increase in PNA and tSNA (n = 6, P < 0.05) in sham-denervated rats. Carotid body removal attenuated sympathoexcitation (n = 5, P < 0.05) but did not affect the tachypnoeic response. A precollicular transection disconnecting the hypothalamus abolished the sympathoexcitatory and tachypnoeic responses to NaCl overload (n = 6, P < 0.05). Equi-osmolar infusions of mannitol did not alter the PNA and tSNA in sham-denervated rats (n = 5). Sodium chloride infusions increased carotid sinus nerve activity (n = 10, P < 0.05), whereas mannitol produced negligible changes (n = 5). The results indicate that carotid bodies are activated by acute NaCl overload, but not by mannitol. We conclude that the carotid bodies contribute to the increased sympathetic activity during acute NaCl overload, whereas the ventilatory response is mainly mediated by hypothalamic mechanisms.


Assuntos
Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Cloreto de Sódio/toxicidade , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Solução Salina Hipertônica/farmacologia , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/farmacologia
6.
Neuroscience ; 332: 88-100, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27373771

RESUMO

Preconditioning can induce a cascade of cellular events leading to neuroprotection against subsequent brain insults. In this study, we investigated the chronic effects of hypoxic preconditioning on spontaneous recurrent seizures (SRS), neuronal death, and spatial memory performance in rats subjected to pilocarpine (Pilo)-induced status epilepticus (SE). Rats underwent a short hypoxic episode (7% O2+93% N2; 30min on two consecutive days) preceding a 4-h SE (HSE group). Control groups were rats submitted to SE only (SE), rats subjected to hypoxia only (H) or normoxia-saline (C). Animals were monitored for the occurrence of SRS, and spatial memory performance was evaluated in the radial-arm maze. Hippocampal sections were analyzed for cell death and mossy fiber sprouting at 1 or 60days after SE. Compared to SE group, HSE had increased SE latency, reduced number of rats with SRS, reduced mossy fiber sprouting at 60days, and reduced cell death in the hilus and the CA3 region 1 and 60days after SE. Additionally, HSE rats had better spatial memory performance than SE rats. Our findings indicated that short hypoxic preconditioning preceding SE promotes long-lasting protective effects on neuron survival and spatial memory.


Assuntos
Hipocampo/patologia , Precondicionamento Isquêmico , Transtornos da Memória/prevenção & controle , Neurônios/patologia , Estado Epiléptico/terapia , Animais , Modelos Animais de Doenças , Masculino , Transtornos da Memória/patologia , Neuroproteção , Pilocarpina , Ratos Wistar , Memória Espacial , Estado Epiléptico/patologia , Estado Epiléptico/psicologia
7.
Life Sci ; 146: 154-62, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26776833

RESUMO

AIMS: Aerobic exercise is indicated for prevention and treatment of obesity-induced cardiovascular disorders. Although the resistance training (RT) may also produce effects similar to aerobic exercise, this is not completely clear yet. In the present study, we tested if RT in moderate intensity might prevent alterations in blood pressure (BP), sympathetic modulation of systolic blood pressure (SBP), baroreflex function and the changes in renin-angiotensin system (RAS) and cytokines mRNA expression within the nucleus of the tract solitary (NTS) in rats fed with high-fat diet (HFD). MAIN METHODS: Male Holtzman rats (300-320 g) were divided into 4 groups: sedentary with standard chow diet (SED-SD); sedentary with high-fat diet (SED-HFD); RT with standard chow diet (RT-SD); and RT with high-fat diet (RT-HFD). The trained groups performed a total of 10 weeks of moderate intensity RT in a vertical ladder. In the first 3 weeks all experimental groups were fed with SD. In the next 7 weeks, the SED-HFD and RT-HFD groups were fed with HFD. KEY FINDINGS: In SED-HFD, BP and sympathetic modulation of SBP increased, whereas baroreflex bradycardic responses were attenuated. RT prevented the cardiovascular and inflammatory responses (increases in tumoral necrosis factor-α and interleukin-1ß) produced by HFD in SED rats. The anti-inflammatory interleukin-10, angiotensin type 2 receptor, Mas receptor and angiotensin converting enzyme 2 mRNA expressions in the NTS increased in the RT-HFD compared to SED-HFD. SIGNIFICANCE: The data demonstrated that moderate intensity RT prevented obesity-induced cardiovascular disorders simultaneously with reduced inflammatory responses and modifications of RAS in the NTS.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Treinamento Resistido , Adiposidade/efeitos dos fármacos , Animais , Barorreflexo , Pressão Sanguínea , Peso Corporal/efeitos dos fármacos , Citocinas/biossíntese , Inflamação/metabolismo , Masculino , Condicionamento Físico Animal , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina , Núcleo Solitário/metabolismo , Sistema Nervoso Simpático/metabolismo
8.
Front Physiol ; 5: 238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009507

RESUMO

It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.

9.
Exp Physiol ; 99(5): 743-58, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24610833

RESUMO

The contribution of cholinergic mechanisms of the nucleus of the solitary tract (NTS) to cardiorespiratory control is not completely clear. In the present study, we investigated the involvement of the cholinergic mechanisms in the intermediate NTS (iNTS) and commissural NTS (cNTS) on the control of sympathetic (SNA) and phrenic nerve activity (PNA). Decorticated, arterially perfused in situ preparations of male juvenile rats (60-100 g) were used. Acetylcholine (10 mm, 60 nl) injected into the iNTS reduced SNA (-54 ± 4%, versus vehicle -5 ± 3%; P < 0.001) and PNA (-30 ± 4%, versus vehicle -5 ± 6%; P < 0.001), whereas injections of ACh into the cNTS increased PNA (30 ± 6%, versus vehicle 5 ± 3%; P < 0.001), without changing SNA. Pretreatment with mecamylamine (nicotinic antagonist; 5 mm) abolished all the effects of ACh injected into the iNTS or the cNTS, whereas atropine (muscarinic antagonist; 5 mm) reduced only the effects of ACh injected into the cNTS. Mecamylamine injected into the cNTS also reduced the tachypnoea in response to peripheral chemoreflex activation. The baroreflex was unaltered by injections of atropine or mecamylamine into the NTS. The results suggest that ACh and mainly nicotinic receptors in the NTS are involved in the modulation of SNA and PNA, with distinct functions between the iNTS and the cNTS. An involvement of the nicotinic receptors in the cNTS in the tachypnoea in response to peripheral chemoreflex activation is also suggested.


Assuntos
Acetilcolina/farmacologia , Nervo Frênico/fisiologia , Núcleo Solitário/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Animais , Atropina/farmacologia , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Masculino , Mecamilamina/farmacologia , Antagonistas Nicotínicos/farmacologia , Ratos , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/fisiologia
10.
Am J Physiol Regul Integr Comp Physiol ; 304(3): R252-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23193117

RESUMO

Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280-350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 µl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite.


Assuntos
Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Mineralocorticoides/metabolismo , Rombencéfalo/fisiologia , Sódio na Dieta/metabolismo , Animais , Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Rombencéfalo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA