Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(3): 2119-2130, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954220

RESUMO

Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.


Assuntos
Biofilmes , Candida , Catéteres , Glicolipídeos , Tensoativos , Glicolipídeos/farmacologia , Glicolipídeos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Tensoativos/farmacologia , Tensoativos/química , Candida/efeitos dos fármacos , Candida/fisiologia , Catéteres/microbiologia , Látex/química , Látex/farmacologia , Escherichia coli/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia
2.
Bioprocess Biosyst Eng ; 41(8): 1177-1183, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29700657

RESUMO

Conventional biosurfactants have high production costs. Therefore, the use of low-cost carbon sources for their production is attractive for industry. The ability to remain stable under various environmental conditions further extends industrial application. Here we aimed to evaluate the stability of a new lipopeptide produced by Corynebacterium aquaticum using fish residue as an unconventional energy source. The biosurfactant was produced using 3% fish residue, 2% of the microorganism, and mineral medium. Biosurfactant characterization was performed by thin layer chromatography (TLC), as well as by testing its infrared, surface tension, emulsifying activity, and ionic character. The stability of the biosurfactant was evaluated by testing its surface tension at a range of temperatures, pH, and saline concentrations, as well as after 6 months of storage. The biosurfactant was characterized as a lipopeptide due to its retention time, which was coincident with the amino acid and lipid chains obtained in the TLC analysis, being confirmed by some regions of absorption verified in the infrared analysis. The surface tension and emulsifying activity of the biosurfactant were 27.8 mN/m and 87.6%, respectively, and showed anionic character. The biosurfactant was stable at temperatures of 20 to 121 °C, in saline concentrations of 1 to 7%, and at pH close to neutrality. Based on our findings, it is possible to use unconventional sources of energy to produce a lipopeptide biosurfactant that can act under various environments.


Assuntos
Proteínas de Bactérias/biossíntese , Corynebacterium/crescimento & desenvolvimento , Lipopeptídeos/biossíntese , Tensoativos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA