Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(4): 1644-1655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37495827

RESUMO

This study evaluated the effect of prepubertal arsenic exposure in the liver and kidney of pubescent rats and their reversibility 30 days after arsenic withdrawal. Male pups of Wistar rats (21 days old) were divided into two groups (n = 20/group): control animals received filtered water, and exposed rats received 10 mg L-1 arsenic from postnatal day (PND) 21 to PND 51. The liver and kidney of 52 days old rats (n = 10/group) were examined to investigate the effects of arsenic on micromineral content, antioxidant enzyme activity, histology, and biochemistry parameters. The other animals were kept alive under free arsenic conditions until 82 days old and further analyzed by the same parameters. Our results revealed that 52-day-old rats increased arsenic content in their liver and arsenic and manganese in their kidney. In those animals, glycogen and zinc content and catalase activity were reduced in the liver, and the selenium content decreased in the kidney. Thirty days later, arsenic reduced the manganese and iron content and SOD and CAT activity in the liver of 82-day-old rats previously exposed to arsenic, while glycogen and selenium content decreased in their kidney. In contrast, PND 82 rats exhibited higher retention of copper in the liver, an increase in iron and copper content, and CAT and GST activity in the kidney. Significant histological alterations of liver and kidney tissues were not observed in rats of both ages. We conclude that arsenic-induced toxicity could alter differently the oxidative status and balance of trace elements in pubertal and adult rats, demonstrating that the metalloid can cause effects in adulthood.


Assuntos
Arsênio , Selênio , Ratos , Masculino , Animais , Arsênio/metabolismo , Cobre/farmacologia , Ratos Wistar , Selênio/farmacologia , Selênio/metabolismo , Manganês/farmacologia , Catalase/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Rim/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Glicogênio/metabolismo
2.
Microsc Microanal ; 29(2): 635-648, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749728

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by elevated arterial pressure and vascular resistance. PAH may cause alterations in the microcirculation of several organs, including the kidney, liver, brain, and testes. However, it remains unclear whether monocrotaline-induced PAH exerts detrimental effects on animal testes. Thus, we analyzed the impact of PAH on testicular morphology and function. Additionally, we investigated the effect of resistance exercise training (RT) on testicular parameters in PAH rats. Eight healthy Wistar rats and eight PAH rats were subjected to RT training for 30 days; the other PAH and healthy rats (n = 8/group) did not exercise. PAH rats had lower reproductive organ weight, serum testosterone levels, testicular glucose, and nitric oxide (NO) levels, Leydig cell parameters, tubular morphometry, germ cell counts, and daily sperm production than healthy animals did. The practice of RT attenuated the negative impact of PAH on the relative weights of the testes and epididymides, Leydig cell number, nuclear volume, testicular NO levels, and seminiferous epithelium architecture. Moreover, RT positively influenced testosterone levels in PAH animals. We conclude that PAH exerts deleterious effects on testicular histology and function. However, RT can be beneficial to the PAH-affected testicular parameters.


Assuntos
Hipertensão Arterial Pulmonar , Treinamento Resistido , Masculino , Ratos , Animais , Humanos , Ratos Wistar , Testículo , Sêmen , Testosterona
3.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627505

RESUMO

The stingless bee Partamona helleri plays a role in pollinating both native and cultivated plants in the Neotropics. However, its populations can be reduced by the pyrethroid insecticide lambda-cyhalothrin. This compound may cross the intestinal barrier and circulate through the hemolymph, affecting various non-target bee organs. The aim of the present study was to assess the extent of cellular damage in the midgut and the resulting oxidative stress caused by lambda-cyhalothrin in P. helleri workers. Bees were orally exposed to lambda-cyhalothrin. The lethal concentration at which 50% of the bees died (LC50) was 0.043 mg a.i. L-1. The P. helleri workers were fed this concentration of lambda-cyhalothrin and their midguts were evaluated. The results revealed signs of damage in the midgut epithelium, including pyknotic nuclei, cytoplasm vacuolization, changes in the striated border, and the release of cell fragments, indicating that the midgut was compromised. Furthermore, the ingestion of lambda-cyhalothrin led to an increase in the activity of the detoxification enzyme superoxide dismutase and the levels of the NO2/NO3 markers, indicating oxidative stress. Conversely, the activities of the catalase and glutathione S-transferase enzymes decreased, supporting the occurrence of oxidative stress. In conclusion, the ingestion of lambda-cyhalothrin by P. helleri workers resulted in damage to their midguts and induced oxidative stress.

4.
Environ Sci Pollut Res Int ; 30(25): 66923-66935, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37099096

RESUMO

There are multifactorial causes for the recent decline in bee populations, which has resulted in compromised pollination and reduced biodiversity. Bees are considered one of the most important non-target insects affected by insecticides used in crop production. In the present study, we investigated the effects of acute oral exposure to spinosad on the survival, food consumption, flight behavior, respiration rate, activity of detoxification enzymes, total antioxidant capacity (TAC), brain morphology, and hemocyte count of Apis mellifera foragers. We tested six different concentrations of spinosad for the first two analyses, followed by LC50 (7.7 mg L-1) for other assays. Spinosad ingestion decreased survival and food consumption. Exposure to spinosad LC50 reduced flight capacity, respiration rate, and superoxide dismutase activity. Furthermore, this concentration increased glutathione S-transferase activity and the TAC of the brain. Notably, exposure to LC50 damaged mushroom bodies, reduced the total hemocyte count and granulocyte number, and increased the number of prohemocytes. These findings imply that the neurotoxin spinosad affects various crucial functions and tissues important for bee performance and that the toxic effects are complex and detrimental to individual homeostasis.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Macrolídeos , Combinação de Medicamentos , Dose Letal Mediana
5.
Bioorg Med Chem ; 72: 116966, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998390

RESUMO

Chagas disease is a potentially fatal infection in 21 endemic Latin America countries for which the effectiveness of reference antiparasitic chemotherapy is limited. Thus, we developed three biopharmaceuticals and evaluated the effectiveness of different immunization strategies (recombinant protein NTPDase-1 [rNTPDase-1], DNA plasmid encoding Trypanosoma cruzi NTPDase-1 [TcNTPDase-1] and DNA-NTPDase-1 prime/rNTPDase-1 boost [Prime-boost]) based on the surface ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) enzyme of T. cruzi in animals challenged with a virulent strain (Y) of this parasite. BALB/c mice were immunized three times at 30 days intervals, challenged with T. cruzi 15 days after the last immunization, and euthanized 30 days after T. cruzi challenge. Our results showed limited polarization of specific anti-ecto-NTPDase immunoglobulins in mice receiving both immunization protocols. Conversely, the Prime-boost strategy stimulated the Th1 protective phenotype, upregulating TNF-α and downregulating IL-10 production while increasing the activation/distribution of CD3+/CD8+, CD4+/CD44hi and CD8+/CD44hi/CD62L cells in immunized and infected mice. Furthermore, IL-6 and IL10 levels were reduced, while the distribution of CD4+/CD44hi and CD3+/CD8+ cells was increased from rNTPDase-1 and DNA-NTPDase1-based immunization strategies. Animals receiving DNA-NTPDase1 and Prime-boost protocols before T. cruzi challenged exhibited an enhanced immunological response associated with IL-17 upregulation and remarkable downregulation of heart parasitism (T. cruzi DNA) and mortality. These findings indicated that NTPDase-1 with Prime-boost strategy induced a protective and sustained Th17 response, enhancing host resistance against T. cruzi. Thus, ecto-NTPDase is a potentially relevant and applicable in the development of biopharmaceuticals with greater immunoprophylactic potential for Chagas disease.


Assuntos
Produtos Biológicos , Doença de Chagas , Trypanosoma cruzi , Animais , Antiparasitários , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Interleucina-10 , Interleucina-17 , Interleucina-6 , Camundongos , Camundongos Endogâmicos BALB C , Nucleosídeos , Polifosfatos , Proteínas Recombinantes/farmacologia , Fator de Necrose Tumoral alfa
6.
Environ Sci Pollut Res Int ; 29(4): 6294-6305, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34449024

RESUMO

Copper sulfate (CuSO4) is widely used in agriculture as a pesticide and foliar fertilizer. However, the possible environmental risks associated with CuSO4 use, particularly related to pollinating insects, have been poorly studied. In this study, we evaluated both lethal and sublethal effects of CuSO4 on the stingless bee Partamona helleri. Foragers were orally exposed to five concentrations of CuSO4 (5000, 1666.7, 554.2, 183.4, 58.4 µg mL-1), and the concentration killing 50% (LC50) was estimated. This concentration (142.95 µg mL-1) was subsequently used in behavioral, midgut morphology, and antioxidant activity analyses. Bee mortality increased with the ingestion of increasing concentrations of CuSO4. Ingestion at the estimated LC50 resulted in altered walking behavior and damage to the midgut epithelium and peritrophic matrix of bees. Furthermore, the LC50 increased the catalase or superoxide dismutase activities and levels of the lipid peroxidation biomarker malondialdehyde. Furthermore, the in situ detection of caspase-3 and LC3, proteins related to apoptosis and autophagy, respectively, revealed that these processes are intensified in the midgut of treated bees. These data show that the ingestion of CuSO4 can have considerable sublethal effects on the walking behavior and midgut of stingless bees, and therefore could pose potential risks to pollinators including native bees. Graphical abstract.


Assuntos
Antioxidantes , Sulfato de Cobre , Animais , Abelhas , Sulfato de Cobre/toxicidade , Sistema Digestório , Fertilizantes , Dose Letal Mediana
7.
Microsc Microanal ; : 1-13, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184626

RESUMO

Green tea is a popular drink used for therapeutic purposes to mitigate the consequences of diabetes. In this study, we aimed at evaluating the potential of green tea infusion to ameliorate structural and enzymatic damages caused by hyperglycemia in the testis and epididymis of Wistar rats. For that, nondiabetic and streptozotocin-induced diabetic rats (negative control and diabetes control, respectively) received 0.6 mL of water by gavage. Another set of diabetic animals received 100 mg/kg of green tea infusion diluted in 0.6 mL of water/gavage (diabetes + green tea) daily. After 42 days of treatment, the testes and epididymides were removed and processed for histopathological analysis, micromineral determination, and enzymatic assays. The results showed that treatment with green tea infusion preserved the testicular and epididymal histoarchitecture, improving the seminiferous epithelium and the sperm production previously affected by diabetes. Treatment with green tea reduced tissue damages caused by this metabolic condition. Given the severity of hyperglycemia, there was no efficacy of the green tea infusion in maintaining the testosterone levels, antioxidant enzyme activity, and microminerals content. Thus, our findings indicate a protective effect of this infusion on histological parameters, with possible use as a complementary therapy for diabetes.

8.
Life Sci ; 276: 119450, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798548

RESUMO

AIMS: Although excessive fat and caffeine intake are independent risk factors for bone microstructural and functional disturbances, their association remains overlooked. Thus, we investigated the impact of high-fat diet (HFD) and caffeine alone and combined on serum lipid profile, bone microstructure, micromineral distribution and biomechanical properties. METHODS: Forty female C57BL/6 mice were randomized into 4 groups daily treated for seventeen weeks with standard diet (SD) or HFD (cafeteria diet) alone or combined with 50 mg/kg caffeine. KEY FINDINGS: The association between HFD and caffeine reduced the weight gain compared to animals receiving HFD alone. Caffeine alone or combined with HFD increases total and HDL cholesterol circulating levels. HFD also reduced calcium, phosphorus and magnesium bone levels compared to the groups receiving SD, and this reduction was aggravated by caffeine coadministration. From biomechanical assays, HFD combined with caffeine increased bending strength and stiffness of tibia, a finding aligned with the marked microstructural remodeling of the cortical and cancellous bone in animals receiving this combination. SIGNIFICANCE: Our findings indicated that HFD and caffeine interact to induce metabolic changes and bone microstructural remodeling, which are potentially related to bone biomechanical adaptations in response to HFD and caffeine coadministration.


Assuntos
Peso Corporal , Osso e Ossos/fisiopatologia , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Animais , Fenômenos Biomecânicos , Osso e Ossos/efeitos dos fármacos , Colesterol/sangue , Feminino , Camundongos , Camundongos Endogâmicos C57BL
9.
Toxicol Appl Pharmacol ; 409: 115304, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127376

RESUMO

Arsenic induces reproductive disorders in pubertal males after prepubertal exposure. However, it is unclear the extent to which those effects remain in testis and epididymis of sexually mature rats after arsenic insult. This study evaluated the effects of prepubertal arsenic exposure in male organs of pubertal rats, and their reversibility in adult rats. Male pups of Wistar rats on postnatal day (PND) 21 were divided into two groups (n = 20/group): Control animals received filtered water and exposed rats received 10 mg L--1 arsenic from PND 21 to PND 51. At PND 52, testis and epididymis of ten animals per group were examined for toxic effects under morphological, functional, and molecular approaches. The other animals were kept alive under free arsenic conditions until PND 82, and further analyzed for the same parameters. Pubertal rats overexpressed mRNA levels of SOD1, SOD2, CAT, GSTK1, and MT1 in their testis and SOD1, CAT, and GSTK1 in their epididymis. In those organs, catalase activity was altered, generating byproducts of oxidative stress. The antioxidant gene expression was unchanged in adult rats in contrast to the altered activity of antioxidant enzymes. Histological alterations of testis and epididymis tissues were observed in pubertal and adult rats. Interestingly, only adult rats exhibited a remarkable decrease in serum testosterone levels. Prepubertal exposure to arsenic caused morphological and functional alterations in male reproductive organs of pubertal rats. In adult rats, these damages disappeared, remained, get worsened, or recovered depending on the parameter analyzed, indicating potential male fertility disorders during adulthood.


Assuntos
Arsênio/toxicidade , Reprodução/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo
10.
Biomed Pharmacother ; 126: 110097, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203891

RESUMO

AIMS: In this work, we aimed to evaluate the effects of the Leishmania infantum chagasi infection on the liver of vaccinated mice, considering parameters of tissue damage and the inflammatory response elicited by vaccination. MAIN METHODS: We used recombinant LPG3 protein (rLPG3) as immunogen in BALB/c mice before challenge with promastigote forms of L. infantum chagasi. The animals were separated into five groups: NI: non-infected animals; NV: non-vaccinated; SAP: treated with saponin; rLPG3: immunized with rLPG3; rLPG3 + SAP: immunized with rLPG3 plus SAP. The experiment was conducted in replicate, and the vaccination protocol consisted of three subcutaneous doses of rLPG3 (40 µg + two boosters of 20 µg). The mice were challenged two weeks after the last immunization. KEY FINDINGS: Our results showed that rLPG3 + SAP immunization decreased the parasite burden in 99 %, conferring immunological protection in the liver of the infected animals. Moreover, the immunization improved the antioxidant defenses, increasing CAT and GST activity, while reducing the levels of oxidative stress markers, such as H2O2 and NO3/NO2, and carbonyl protein in the organ. As a consequence, rLPG3 + SAP immunization preserved tissue integrity and reduced the granuloma formation, inflammatory infiltrate and serum levels of AST, ALT, and ALP. SIGNIFICANCE: Taken together, these results showed that rLPG3 vaccine confers liver protection against L. infantum chagasi in mice, while maintaining the liver tissue protected against the harmful inflammatory effects caused by the vaccine followed by the infection.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/imunologia , Leishmaniose/prevenção & controle , Leishmaniose/parasitologia , Hepatopatias Parasitárias/prevenção & controle , Hepatopatias Parasitárias/parasitologia , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antiprotozoários , Antioxidantes , Modelos Animais de Doenças , Imunização , Leishmaniose/patologia , Hepatopatias Parasitárias/patologia , Camundongos , Estresse Oxidativo , Carga Parasitária , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA