Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
S Afr J Physiother ; 75(1): 478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309163

RESUMO

BACKGROUND: Many studies have investigated isokinetic performance in volleyball players but not through surface maps. OBJECTIVES: The goals of this study were to assess velocity-specific isokinetic knee extensor-flexor muscle strength and to compare the isokinetic knee extensor-flexor muscles between professional (PRO) and under-17 (U17) female volleyball players. METHOD: This cross-sectional laboratory study was developed with two groups: PRO (n = 12), medianage = 21.3 years, and U17 (n = 9), medianage = 15 years. Peak torque, total work, mean power, angle of peak torque, hamstring-quadriceps torque ratio (H-Q ratio) and torque-angle-velocity surface maps were analysed from knee extension-flexion at 60, 120 and 300 degrees per second (°/s). RESULTS: Significant differences were identified for extensor peak torque between PRO x = 202.3 Newton metre (N·m) (standard deviation [SD] = 24.4) and U17 x = 141.6 N·m (30.1) at 60 °/s (p < 0.001; d = 2.21) as well as flexor peak torque (PRO x = 75.7 N·m [10.3] and U17 x = 57.7 N·m [11.4]) at 120 °/s (p < 0.001; d = 1.65) for the dominant limb. There were also significant group differences for total work and mean power at all velocities for extension and flexion. Surface maps demonstrated higher torque at lower speeds for both groups with smaller torque changes across velocities for flexion. CONCLUSION: Different groups of female volleyball players showed contrasting concentric knee muscle strength across isokinetic velocities. CLINICAL IMPLICATIONS: These results demonstrate the importance of specific strength training for different age groups, even within the same sport, and provide insight into muscle strength.

2.
Acta Trop ; 191: 29-37, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30586571

RESUMO

New therapeutics against leishmaniasis are desirable, since the current drugs applied against this disease complex presents problems, such as the toxicity, high cost and/or parasite resistance. In the present study, a new fluoroquinoline derivate, namely 7-chloro-N-(4-fluorophenethyl)quinolin-4-amine or GF1061, was evaluated regarding to its in vitro antileishmanial action against Leishmania infantum and L. amazonensis species, as well as by its toxicity in mammalian cells and efficacy in the treatment of infected macrophages. The mechanism of action of this molecule in L. amazonensis and the therapeutic efficacy in infected BALB/c mice were also evaluated. Results showed that GF1061 was effective against both parasite species, showing selectivity index (SI) of 38.7 and 42.7 against L. infantum and L. amazonensis promastigotes, respectively, and of 45.0 and 48.9 against the amastigotes, respectively. Amphotericin B (AmpB), used as control, showed SI values of 6.6 and 8.8 against L. infantum and L. amazonensis promastigotes, respectively, and of 2.2 and 2.7 against the amastigotes, respectively. The molecule was effective in treat infected macrophages, as well as it induced alterations in the mitochondrial membrane potential, increase in the reactive oxygen species production, and in the cell integrity of the parasites. Regarding to the in vivo experiments, BALB/c mice (n = 8 per group) were subcutaneously infected with 106L. amazonensis stationary promastigotes and, 60 days post-infection, they received saline or were treated during 10 days, once a day, with AmpB (1 mg/kg body weight) or GF1061 (5 mg/kg body weight). One day after the treatment, the infected tissue, spleen, liver, and draining lymph node (dLN) of the animals were collected, and the parasite load was evaluated. GF1061-treated mice, as compared to the saline and AmpB groups, showed significant reductions in the parasitism in the infected tissue (66% and 62%, respectively), liver (69% and 44%, respectively), spleen (71% and 38%, respectively), and dLN (72% and 48%, respectively). In conclusion, results suggested that GF1061 may be considered as a possible therapeutic target to be evaluated against leishmaniasis in other mammalian hosts.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Fluoroquinolonas/uso terapêutico , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Animais , Leishmaniose/parasitologia , Fígado/parasitologia , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Carga Parasitária , Espécies Reativas de Oxigênio , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA